Quiz suites et séries de fonctions

Quiz suites et séries de fonctions

1. Soit \((f_n)\) une suite de fonctions telles que pour toute suite convergente \((x_n)\), la suite \((f_n(x_n))\) converge. Alors \((f_n)\) converge simplement.

 
 

2. Si la suite des fonctions dérivées \((f_n’)\) converge uniformément sur \(I\) alors \((f_n)\) converge uniformément sur \(I\).

 
 

3. Si \((f_n)\) converge uniformément sur tout segment inclus dans \(I\) alors \((f_n)\) converge uniformément sur \(I\).

 
 

4. Si une suite de fonctions continues \((f_n)\) converge simplement vers \(f\) sur tout segment inclus dans \(\Bbb R\) alors \(f\) est continue sur \(\Bbb R\).

 
 

5. Une limite simple de fonctions croissantes est croissante.

 
 

6. Si la suite de fonctions \((f_n)\) converge uniformément vers 0, la série de fonctions \(\displaystyle\sum f_n\) converge normalement sur \(I\).

 
 

7. La limite uniforme d’une suite de fonctions bornées est bornée.

 
 

8. Une limite simple de fonctions de limites nulles en \(+\infty\) est de limite nulle en \(+\infty\).

 
 

9. Si la série de fonctions \(\displaystyle\sum f_n\) converge normalement alors la série \(\displaystyle\sum |f_n|\) converge uniformément.

 
 

10. Si la série de fonctions \(\displaystyle\sum f_n\) converge absolument et uniformément alors la série de fonctions \(\displaystyle\sum |f_n|\) converge uniformément.

 
 

11. Si \((f_n)\) converge simplement sur \([a,b]\) et uniformément sur \([a,b[\) alors \((f_n)\) converge uniformément sur \([a,b]\).

 
 

12. Une limite simple de fonctions bornées est bornée.

 
 

13. Si \(\displaystyle\sum f_n\) converge normalement sur toute segment inclus dans \(I\) alors \(\displaystyle\sum f_n\) converge uniformément sur \(I\).

 
 

14. Si la suite de fonctions de classe \(\mathcal C^1\) \((f_n)\) converge simplement sur \(I\) et si la suite des fonctions dérivées \((f’_n)\) converge uniformément sur \(I\) alors la suite \((f_n)\) converge uniformément sur tout segment inclus dans \(I\).

 
 

15. Si \((f_n)\) converge uniformément sur \(I\) alors \((f_n)\) converge uniformément sur tout segment inclus dans \(I\).

 
 

16. Si \((f_n)\) converge uniformément sur \(I\) et sur \(J\) alors \((f_n)\) converge uniformément sur \(I\cup J\).

 
 

17. Une limite simple de fonctions paires est paire.

 
 

18. Si \((f_n)\) est une suite de fonctions de classe \(\mathcal C^1\) telle que \((f_n)\) converge uniformément vers \(f\) et \((f’_n)\) converge simplement vers \(g\), alors \(f\) est de classe \(\mathcal C^1\) et \(f’=g\).

 
 

19. La suite de fonctions \(f_n\) converge uniformément sur \(I\) si et seulement si la série de fonctions \(\displaystyle\sum (f_{n+1}-f_n)\) converge normalement sur \(I\).

 
 

20. Si la suite \(f_n\) converge uniformément sur \(I\) et si  pour tout \(x\in I\) la série \(\displaystyle\sum f_n(x)\) vérifie les hypothèses du critère spécial relatif aux séries alternées alors la convergence de la série \(\displaystyle\sum f_n\) est uniforme sur \(I\).