Quiz probabilités

Quiz probabilités

1. Soit \(A_n\) un système complet d’événements et \(B\) un événement. Alors \(\displaystyle P(B)=\sum_nP(A_n\cap B)\).

 
 

2.

\(X\) admet un moment d’ordre 2 si et seulement si sa série génératrice \(G_X\) est deux fois dérivable en 1, et dans ce cas, \(V(X)=G_X'(1)+G_X(1)-G_X(1)^2\).

 
 

3. Deux événements incompatibles sont indépendants.

 
 

4. Si \(X\) est d’espérance nulle alors \(\text{e}^X\) a une espérance égale à 1.

 
 

5. Si \(X\) possède un moment d’ordre 2 alors pour tout \(\epsilon>0\) on a \(P(|X-E(X)|\leq\epsilon)\leq\frac{V(X)}{\epsilon^2}\).

 
 

6. Si \(\Omega\) est un ensemble, \(\mathcal P(\Omega)\) est une tribu si et seulement si \(\Omega\) est fini ou dénombrable.

 
 

7. Soit \(A\) un événement indépendant de \(\overline A\). Alors \(P(A)\in\{0,1\}\).

 
 

8. Soit \(A\) un événement tel que \(P(A)\in]0,1[\), et \(B\) un événement. Alors \(P(B\mid A)+P(B\mid\overline A)=1\).

 
 

9. Soit \(P\) une probabilité définie sur \(({\Bbb N}, \mathcal P({\Bbb N}))\). Alors \(\lim P(\{n\})=0\).

 
 

10. Si \(X\) admet un moment d’ordre 2 alors \(E(X)^2\leq E(X^2)\).

 
 

11.

Si \(X\) et\(Y\) sont deux variables aléatoires à valeur entières, alors leurs séries génératrices vérifient \(G_{X+Y}(t)=G_X(t)G_Y(t)\).

 
 

12. Une variable aléatoire peut être indépendante d’elle même.

 
 

13. Si \(\Omega\) est un ensemble, \(\{\emptyset, \Omega\}\) est une tribu.

 
 

14. Deux variables aléatoires \(X\) et \(Y\) sont indépendantes si et seulement si \(V(X+Y)=V(X)+V(Y)\).

 
 

15. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) est indépendante de la variable \((Y,Z)\), alors \(X\) est indépendante de \(Y\) et de \(Z\).

 
 

16. Soit \(A\) un événement de probabilité non nulle. Alors pour tout événement \(B\) on a \(P(B\mid A)\leq P(B)\).

 
 

17. Seules les lois géométriques sont sans mémoire.

 
 

18. Soit \(A\) un événement de probabilité non nulle, et \(B\) un événement tel que \(P(B\mid A)=1\). Alors \(B\subset A\).

 
 

19. Si deux événements sont à la fois indépendants et incompatibles, l’un des deux est quasi-impossible.

 
 

20. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) et \(Y\) sont indépendantes ainsi que \(X\) et \(Z\), alors \(X\) est indépendante de la variable \((Y,Z)\).

 
 

21. Trois événements indépendants sont deux à deux indépendants.

 
 

22. Si \(X\) suit une loi binomiale \(\mathcal B(n,p)\) alors \(n-X\) suit elle aussi une loi binomiale \(\mathcal B(n,p)\).

 
 

23. La somme de deux variables indépendantes de lois uniformes suit une loi uniforme.

 
 

24. La somme de deux variables qui suivent une loi de Poisson suit une loi de Poisson.