Quiz probabilités

Quiz probabilités

1. Soit \(A\) un événement de probabilité non nulle. Alors pour tout événement \(B\) on a \(P(B\mid A)\leq P(B)\).

 
 

2. Soit \(A_n\) un système complet d’événements et \(B\) un événement. Alors \(\displaystyle P(B)=\sum_nP(A_n\cap B)\).

 
 

3. Seules les lois géométriques sont sans mémoire.

 
 

4. Si \(X\) est d’espérance nulle alors \(\text{e}^X\) a une espérance égale à 1.

 
 

5. Soit \(A\) un événement de probabilité non nulle, et \(B\) un événement tel que \(P(B\mid A)=1\). Alors \(B\subset A\).

 
 

6.

\(X\) admet un moment d’ordre 2 si et seulement si sa série génératrice \(G_X\) est deux fois dérivable en 1, et dans ce cas, \(V(X)=G_X'(1)+G_X(1)-G_X(1)^2\).

 
 

7. Deux variables aléatoires \(X\) et \(Y\) sont indépendantes si et seulement si \(V(X+Y)=V(X)+V(Y)\).

 
 

8. Si \(\Omega\) est un ensemble, \(\{\emptyset, \Omega\}\) est une tribu.

 
 

9. La somme de deux variables indépendantes de lois uniformes suit une loi uniforme.

 
 

10. Si \(\Omega\) est un ensemble, \(\mathcal P(\Omega)\) est une tribu si et seulement si \(\Omega\) est fini ou dénombrable.

 
 

11. Soit \(P\) une probabilité définie sur \(({\Bbb N}, \mathcal P({\Bbb N}))\). Alors \(\lim P(\{n\})=0\).

 
 

12. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) et \(Y\) sont indépendantes ainsi que \(X\) et \(Z\), alors \(X\) est indépendante de la variable \((Y,Z)\).

 
 

13. Si \(X\) suit une loi binomiale \(\mathcal B(n,p)\) alors \(n-X\) suit elle aussi une loi binomiale \(\mathcal B(n,p)\).

 
 

14. Si \(X\) possède un moment d’ordre 2 alors pour tout \(\epsilon>0\) on a \(P(|X-E(X)|\leq\epsilon)\leq\frac{V(X)}{\epsilon^2}\).

 
 

15. Deux événements incompatibles sont indépendants.

 
 

16. Soit \(A\) un événement indépendant de \(\overline A\). Alors \(P(A)\in\{0,1\}\).

 
 

17. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) est indépendante de la variable \((Y,Z)\), alors \(X\) est indépendante de \(Y\) et de \(Z\).

 
 

18. Une variable aléatoire peut être indépendante d’elle même.

 
 

19. Soit \(A\) un événement tel que \(P(A)\in]0,1[\), et \(B\) un événement. Alors \(P(B\mid A)+P(B\mid\overline A)=1\).

 
 

20. Trois événements indépendants sont deux à deux indépendants.

 
 

21. La somme de deux variables qui suivent une loi de Poisson suit une loi de Poisson.

 
 

22.

Si \(X\) et\(Y\) sont deux variables aléatoires à valeur entières, alors leurs séries génératrices vérifient \(G_{X+Y}(t)=G_X(t)G_Y(t)\).

 
 

23. Si deux événements sont à la fois indépendants et incompatibles, l’un des deux est quasi-impossible.

 
 

24. Si \(X\) admet un moment d’ordre 2 alors \(E(X)^2\leq E(X^2)\).