Quiz probabilités

Quiz probabilités

1. Deux événements incompatibles sont indépendants.

 
 

2. Soit \(A\) un événement tel que \(P(A)\in]0,1[\), et \(B\) un événement. Alors \(P(B\mid A)+P(B\mid\overline A)=1\).

 
 

3. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) est indépendante de la variable \((Y,Z)\), alors \(X\) est indépendante de \(Y\) et de \(Z\).

 
 

4. Soit \(P\) une probabilité définie sur \(({\Bbb N}, \mathcal P({\Bbb N}))\). Alors \(\lim P(\{n\})=0\).

 
 

5. Si deux événements sont à la fois indépendants et incompatibles, l’un des deux est quasi-impossible.

 
 

6. Seules les lois géométriques sont sans mémoire.

 
 

7. Si \(X,Y,Z\) sont trois variables aléatoires telles que \(X\) et \(Y\) sont indépendantes ainsi que \(X\) et \(Z\), alors \(X\) est indépendante de la variable \((Y,Z)\).

 
 

8. Si \(X\) suit une loi binomiale \(\mathcal B(n,p)\) alors \(n-X\) suit elle aussi une loi binomiale \(\mathcal B(n,p)\).

 
 

9. Si \(X\) est d’espérance nulle alors \(\text{e}^X\) a une espérance égale à 1.

 
 

10. Une variable aléatoire peut être indépendante d’elle même.

 
 

11. Soit \(A\) un événement de probabilité non nulle, et \(B\) un événement tel que \(P(B\mid A)=1\). Alors \(B\subset A\).

 
 

12. Si \(\Omega\) est un ensemble, \(\{\emptyset, \Omega\}\) est une tribu.

 
 

13. Soit \(A\) un événement de probabilité non nulle. Alors pour tout événement \(B\) on a \(P(B\mid A)\leq P(B)\).

 
 

14.

\(X\) admet un moment d’ordre 2 si et seulement si sa série génératrice \(G_X\) est deux fois dérivable en 1, et dans ce cas, \(V(X)=G_X'(1)+G_X(1)-G_X(1)^2\).

 
 

15. Deux variables aléatoires \(X\) et \(Y\) sont indépendantes si et seulement si \(V(X+Y)=V(X)+V(Y)\).

 
 

16. Trois événements indépendants sont deux à deux indépendants.

 
 

17. Soit \(A\) un événement indépendant de \(\overline A\). Alors \(P(A)\in\{0,1\}\).

 
 

18. La somme de deux variables indépendantes de lois uniformes suit une loi uniforme.

 
 

19. Si \(X\) possède un moment d’ordre 2 alors pour tout \(\epsilon>0\) on a \(P(|X-E(X)|\leq\epsilon)\leq\frac{V(X)}{\epsilon^2}\).

 
 

20. La somme de deux variables qui suivent une loi de Poisson suit une loi de Poisson.

 
 

21. Si \(\Omega\) est un ensemble, \(\mathcal P(\Omega)\) est une tribu si et seulement si \(\Omega\) est fini ou dénombrable.

 
 

22. Soit \(A_n\) un système complet d’événements et \(B\) un événement. Alors \(\displaystyle P(B)=\sum_nP(A_n\cap B)\).

 
 

23. Si \(X\) admet un moment d’ordre 2 alors \(E(X)^2\leq E(X^2)\).

 
 

24.

Si \(X\) et\(Y\) sont deux variables aléatoires à valeur entières, alors leurs séries génératrices vérifient \(G_{X+Y}(t)=G_X(t)G_Y(t)\).