Quiz espaces euclidiens

Quiz espaces euclidiens

1. Tout produit scalaire sur \({\Bbb R}[X]\) possède une base orthonormée échelonnée en degré.

 
 

2. Toute matrice symétrique est diagonalisable.

 
 

3. Soient \(x\) et \(y\) deux vecteurs d’un espace euclidien. Alors \(x\) et \(y\) sont orthogonaux si et seulement si \(\|x+y\|^2=\|x\|^2+\|y\|^2\).

 
 

4. La composition de deux endomorphismes symétriques est un endomorphisme symétrique.

 
 

5. L’application \((A,B)\mapsto\text{Tr}(AB^T)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).

 
 

6. Si \(H_1\) et \(H_2\) sont deux sous-espaces vectoriels d’un même espace euclidien, on a \(H_1\subset H_2\) si et seulement si \(H_1^\perp\subset H_2^\perp\).

 
 

7. Dans un espace euclidien toute famille orthogonale est libre.

 
 

8. La projection orthogonale \(p(x)\) de \(x\) sur un sous-espace vectoriel quelconque \(H\) est caractérisé par les deux conditions :

  • \(p(x)\in H\) ;
  • \(x-p(x)\in H^\perp\).
 
 

9. Un endomorphisme est orthogonal si et seulement s’il transforme toute famille orthogonale en une famille orthogonale.

 
 

10. L’application \((X,Y)\mapsto XY^T\) est un produit scalaire sur \(\text{Mat}_{n,1}({\Bbb R})\).

 
 

11. Une isométrie vectorielle d’un espace euclidien est nécessairement bijective.

 
 

12. L’application \((A,B)\mapsto\text{Tr}(A^TB)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).

 
 

13. Les isométries du plan euclidien sont les rotations.