Quiz calcul matriciel

Quiz calcul matriciel

1. Le déterminant d’une matrice diagonale est le produit des éléments diagonaux.

 
 

2. Toute matrice de rang 1 est semblable à une matrice dont les \(n-1\) premières colonnes sont nulles.

 
 

3. Pour \(A,B\in{\cal M}_n({\Bbb K})\), \(\text{tr}(A+B)=\text{tr}(A)+\text{tr}(B)\) et \(\text{tr}(AB)=\text{tr}(A)\text{tr}(B)\).

 
 

4. Toute matrice de rang 1 est semblable à une matrice dont les \(n-1\) dernières lignes sont nulles.

 
 

5. Si \(e=(e_1,\ldots,e_n)\) est une base et \(e’=(e_n,\ldots,e_1)\) alors \(\text{Mat}_{(e’)}(u)\) est la transposée de \(\text{Mat}_{(e)}(u)\).

 
 

6. Pour \(A,B\in{\cal M}_n({\Bbb K})\) on a \(\text{det}(AB)=\text{det}(BA)\).

 
 

7. La dimension de l’espace des matrices symétriques est \(\displaystyle\frac{n(n-1)}2\).

 
 

8. Le rang d’une matrice triangulaire est supérieur ou égal au nombre de coefficients non nuls sur la diagonale.

 
 

9. Les matrices \(A=\begin{pmatrix}0&0\\ 1&0\end{pmatrix}\) et \(B=\begin{pmatrix}0&1\\ 0&0\end{pmatrix}\) sont semblables.

 
 

10. Le déterminant d’une matrice triangulaire est le produit des éléments diagonaux.

 
 

11. Les matrices diagonales commutent avec toutes les matrices de \({\cal M}_n({\Bbb K})\).

 
 

12. Le produit de deux matrices triangulaires est une matrice triangulaire.

 
 

13. On considère les deux propriétés suivantes :

  1. les matrices \(A\) et \(B\) sont semblables ;
  2. les matrices \(A\) et \(B\) ont même rang  et même trace.
 
 
 
 

14. Une matrice \(A\) et sa transposée \(A^T\) ont même rang.

 
 

15. Une matrice \(A\in{\cal M}_n({\Bbb K})\) est inversible si et seulement si \(\text{rg}(A)=n\).

 
 

16. \(E_{ij}E_{kl}=0\) si et seulement si \(j\ne k\).

 
 

17. Le rang d’une matrice triangulaire est égal au nombres de coefficients non nuls sur la diagonale.

 
 

18. Deux matrices semblables ont même déterminant.

 
 

19. Pour \(A,B,C,D\in{\cal M}_n({\Bbb K})\), \(\text{det}\begin{pmatrix}A&B\\ C&D\end{pmatrix}=\text{det}(A)\text{det}(D)-\text{det}(B)\text{det}(C)\).

 
 

20. Le déterminant est une application linéaire de \({\cal M}_n({\Bbb K})\) vers \(\Bbb K\).

 
 

21. Le rang d’une matrice diagonale est égal au nombre de coefficients non nuls sur la diagonale.

 
 

22. L’ensemble des matrices non inversibles est un sous-espace vectoriel de \({\cal M}_n({\Bbb K})\).

 
 

23. \(\text{min}(\text{rg}(A),\text{rg}(B))≤\text{rg}(AB)≤\text{max}(\text{rg}(A),\text{rg}(B))\).

 
 

24. Une matrice triangulaire dont les termes diagonaux sont nuls est nilpotente.

 
 

25. Deux matrices \(A\) et \(A’\) sont semblables s’il existe une matrice \(P\) telle que \(PA’=AP\).

 
 

26. Le déterminant de Vandermonde \(V(x_1,\ldots,x_n)\) vaut \(\displaystyle\prod_{i\ne j}(x_j-x_i)\).

 
 

27. Le sous-espace vectoriel des matrices de trace nulle est de dimension \(n-1\).

 
 

28. La dimension de l’espace des matrices symétriques est \(\displaystyle\frac{n(n+1)}2\).

 
 

29. Pour \(\lambda\in{\Bbb K}\) et \(A\in{\cal M}_n({\Bbb K})\), \(\text{det}(\lambda A)=\lambda\text{det}(A)\).