Quiz intégration

Quiz intégration

1. Si une fonction continue et intégrable sur \(\Bbb R_+\) possède une limite en \(+∞\), celle-ci est nulle.

 
 

2. Une primitive \(F\) sur \(\Bbb R\) d’une fonction \(f\) \(T\)-périodique est elle-même \(T\)-périodique.

 
 

3. Le produit de deux fonctions intégrables sur \(\Bbb R\) est intégrable sur \(\Bbb R\).

 
 

4. La fonction \(\displaystyle t\mapsto\frac1{(t-1)^\alpha}\) est intégrable sur \(]1,2]\) si et seulement si \(\alpha<1\).

 
 

5. Une primitive \(F\) sur \(\Bbb R\) d’une fonction impaire \(f\) est paire.

 
 

6. Si \(f\) est continue et positive sur \(\Bbb R_+\), la série \(\displaystyle \sum f(n)\) converge si et seulement si l’intégrale \(\displaystyle\int_0^{+∞}f(t)dt\) converge.

 
 

7. Si une fonction continue sur \(\Bbb R_+\) est intégrable, elle tend vers 0 en \(+∞\).

 
 

8. La fonction \(\displaystyle t\mapsto\frac{\sin t}t\) est intégrable sur \(]0,+∞[\).

 
 

9. Si \(f\) est continue sur \([a,b]\) alors \(\displaystyle\lim\frac{b-a}n\sum_{k=0}^{n-1}f\Bigl(k\frac{b-a}n\Bigr)=\int_a^bf(t)dt\).

 
 

10. Une fonction \(f:\Bbb R\to\Bbb R\) est intégrable lorsqu’elle est continue par morceaux et \(\displaystyle\int_{\Bbb R}f(t)dt\) converge.

 
 

11. Si une fonction continue et monotone sur \(\Bbb R_+\) est intégrable, elle tend vers 0 en \(+∞\).

 
 

12. La fonction \(t\mapsto\ln t\) est intégrable sur \(]0,1]\).

 
 

13. Si la fonction \(f\) est continue sur \(]0,1]\) et admet une limite finie en 0 alors \(f\) est intégrable.

 
 

14. La fonction \(\displaystyle t\mapsto\frac1{\sqrt{1-t^2}}\) est intégrable sur \(]-1,1[\).

 
 

15. Si \(f\) est continue sur \([0,1]\) alors \(\displaystyle\lim\frac1n\sum_{k=0}^{n}f\Bigl(\frac kn\Bigr)=\int_0^1f(t)dt\).

 
 

16. Si une fonction continue sur \(\Bbb R_+\) est intégrable, \(\displaystyle\lim_{x\to+∞}\int_x^{x^2}f(t)dt=0\).

 
 

17. Une primitive \(F\) sur \(\Bbb R\) d’une fonction paire \(f\) est impaire.

 
 

18. La somme de deux fonctions intégrables sur \(\Bbb R\) est intégrable sur \(\Bbb R\).

 
 

19. Si \(f\) est continue et vérifie \(\displaystyle\Bigl|\int_a^bf(t)dt\Bigr|=\int_a^b|f(t)|dt\) alors \(f\) est de signe constant.

 
 

20. Une fonction \(f\) est intégrable sur \(\Bbb R\) si et seulement si elle est intégrable sur tout segment de \(\Bbb R\).

 
 

21. Si une fonction continue est intégrable sur \(\Bbb R_+\), elle est bornée.

 
 

22. La fonction \(\displaystyle t\mapsto\frac1{t\ln t}\) est intégrable sur \([2,+∞[\).