Quiz espaces euclidiens

Quiz espaces euclidiens

1. Soient \(x\) et \(y\) deux vecteurs d’un espace euclidien. Alors \(x\) et \(y\) sont orthogonaux si et seulement si \(\|x+y\|^2=\|x\|^2+\|y\|^2\).

 
 

2. La projection orthogonale \(p(x)\) de \(x\) sur un sous-espace vectoriel quelconque \(H\) est caractérisé par les deux conditions :

  • \(p(x)\in H\) ;
  • \(x-p(x)\in H^\perp\).
 
 

3. Les isométries du plan euclidien sont les rotations.

 
 

4. Tout produit scalaire sur \({\Bbb R}[X]\) possède une base orthonormée échelonnée en degré.

 
 

5. Toute matrice symétrique est diagonalisable.

 
 

6. L’application \((X,Y)\mapsto XY^T\) est un produit scalaire sur \(\text{Mat}_{n,1}({\Bbb R})\).

 
 

7. La composition de deux endomorphismes symétriques est un endomorphisme symétrique.

 
 

8. Dans un espace euclidien toute famille orthogonale est libre.

 
 

9. Une isométrie vectorielle d’un espace euclidien est nécessairement bijective.

 
 

10. L’application \((A,B)\mapsto\text{Tr}(AB^T)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).

 
 

11. Un endomorphisme est orthogonal si et seulement s’il transforme toute famille orthogonale en une famille orthogonale.

 
 

12. Si \(H_1\) et \(H_2\) sont deux sous-espaces vectoriels d’un même espace euclidien, on a \(H_1\subset H_2\) si et seulement si \(H_1^\perp\subset H_2^\perp\).

 
 

13. L’application \((A,B)\mapsto\text{Tr}(A^TB)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).