Quiz espaces euclidiens

Quiz espaces euclidiens

1. L’application \((X,Y)\mapsto XY^T\) est un produit scalaire sur \(\text{Mat}_{n,1}({\Bbb R})\).

 
 

2. La projection orthogonale \(p(x)\) de \(x\) sur un sous-espace vectoriel quelconque \(H\) est caractérisé par les deux conditions :

  • \(p(x)\in H\) ;
  • \(x-p(x)\in H^\perp\).
 
 

3. Tout produit scalaire sur \({\Bbb R}[X]\) possède une base orthonormée échelonnée en degré.

 
 

4. Une isométrie vectorielle d’un espace euclidien est nécessairement bijective.

 
 

5. Toute matrice symétrique est diagonalisable.

 
 

6. Les isométries du plan euclidien sont les rotations.

 
 

7. Si \(H_1\) et \(H_2\) sont deux sous-espaces vectoriels d’un même espace euclidien, on a \(H_1\subset H_2\) si et seulement si \(H_1^\perp\subset H_2^\perp\).

 
 

8. L’application \((A,B)\mapsto\text{Tr}(A^TB)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).

 
 

9. L’application \((A,B)\mapsto\text{Tr}(AB^T)\) est un produit scalaire sur \(\text{Mat}_{n,p}({\Bbb R})\).

 
 

10. Soient \(x\) et \(y\) deux vecteurs d’un espace euclidien. Alors \(x\) et \(y\) sont orthogonaux si et seulement si \(\|x+y\|^2=\|x\|^2+\|y\|^2\).

 
 

11. La composition de deux endomorphismes symétriques est un endomorphisme symétrique.

 
 

12. Dans un espace euclidien toute famille orthogonale est libre.

 
 

13. Un endomorphisme est orthogonal si et seulement s’il transforme toute famille orthogonale en une famille orthogonale.