OPTIMISATION D'UNE INTERPOLATION (X PC 2020)

Durée: 4 heures

Notations

Dans tout le problème, pour tout $(a,b) \in \mathbb{N}^2$ on notera $[a,b] = \{i \in \mathbb{N} \mid a \le i \le b\}$ l'ensemble des entiers compris entre a et b. Soient $p,q \in \mathbb{N}^*$ deux entiers strictement positifs. On note $\mathcal{M}_{p,q}(\mathbb{R})$ l'ensemble des matrices à coefficients réels de taille $p \times q$ (p lignes et q colonnes). Lorsque p = q, on notera $\mathcal{M}_p(\mathbb{R})$ l'ensemble des matrices carrées de taille $p \times p$.

Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{R})$, A^T désignera la transposée de A. Un vecteur $u \in \mathbb{R}^p$ pourra être identifié à un vecteur colonne de $\mathcal{M}_{p,1}(\mathbb{R})$ et u^T sera le vecteur ligne associé de $\mathcal{M}_{1,p}(\mathbb{R})$.

Pour tous A, B $\in \mathcal{M}_{p,q}(\mathbb{R})$ on note A \odot B la matrice de $\mathcal{M}_{p,q}(\mathbb{R})$ définie pour tous $1 \le i \le p$ et $1 \le j \le q$ par :

$$(A \odot B)_{ij} = A_{ij}B_{ij}$$

où pour tout matrice $M \in \mathcal{M}_{p,q}(\mathbb{R})$, M_{ij} désigne le coefficient de la ligne i et de la colonne j.

Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{R})$, on définit $A^{(0)} \in \mathcal{M}_{p,q}(\mathbb{R})$ la matrice telle que $A_{ij}^{(0)} = 1$ pour tous $1 \le i \le p$ et $1 \le j \le q$ puis par récurrence, $A^{(n+1)} = A^{(n)} \odot A$ pour tout $n \in \mathbb{N}$.

Enfin, on dira qu'une matrice $A \in \mathcal{M}_p(\mathbb{R})$ est symétrique positive si $A^T = A$ et $u^T A u \ge 0$ pour tout $u \in \mathbb{R}^p$. L'ensemble des matrices symétriques positives de $\mathcal{M}_p(\mathbb{R})$ sera noté $\operatorname{Sym}^+(p)$.

Dépendance des parties

Les parties III et IV sont indépendantes des parties I et II et la partie V dépend des parties précédentes.

Partie I.

- Question 1. Montrer que pour toutes matrices A et B dans $\operatorname{Sym}^+(p)$ et tous réels positifs a et b on a $aA + bB \in \operatorname{Sym}^+(p)$.
- **Question 2.** Montrer que si $v \in \mathbb{R}^p$ alors la matrice $A = (A_{ij})_{(i,j) \in [\![1,p]\!]^2}$ définie par $A = vv^T$ est dans $Sym^+(p)$.

Question 3.

- a) Montrer que pour tous $u, v \in \mathbb{R}^p$, on a $(uu^T) \odot (vv^T) = (u \odot v)(u \odot v)^T$.
- b) Soit $A \in \operatorname{Sym}^+(p)$. On note $\lambda_1, \dots, \lambda_p$ les valeurs propres (avec multiplicité) de A et (u_1, \dots, u_p) une famille orthonormale de vecteurs propres associés. Montrer que $\lambda_k \geqslant 0$ pour tout $k \in [\![1,p]\!]$ et que $A = \sum_{k=1}^p \lambda_k u_k u_k^{\mathrm{T}}$.
- c) En déduire que si A, B \in Sym⁺(p) alors A \odot B \in Sym⁺(p).

Partie II.

Pour $f : \mathbb{R} \to \mathbb{R}$ et $A \in \mathcal{M}_p(\mathbb{R})$, on note $f[A] \in \mathcal{M}_p(\mathbb{R})$ la matrice définie par $f[A]_{ij} = f(A_{ij})$ pour tout $(i,j) \in [[1,p]]^2$.

Question 4. Soit $n \in \mathbb{N}$ et $P : \mathbb{R} \to \mathbb{R}$ défini par $P(x) = \sum_{k=0}^{n} a_k x^k$ où $a_k \ge 0$ pour tout $k \in [0, n]$ un polynôme à coefficients positifs.

- a) Vérifier que $P[A] = \sum_{k=0}^{n} a_k A^{(k)}$ pour toute matrice $A \in \mathcal{M}_p(\mathbb{R})$.
- b) Montrer que si $A \in Sym^+(p)$ alors $P[A] \in Sym^+(p)$.

On pose, pour tout $n \ge 0$ et tout $x \in \mathbb{R}$, $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ où k! désigne la factorielle de k.

Lycée Marcelin Berthelot page 1

Question 5. Soit $A \in Sym^+(p)$.

a) Montrer que pour tout $(i, j) \in [1, p]^2$, on a

$$\lim_{n \to +\infty} P_n[A]_{ij} = \exp(A_{ij})$$

- b) Montrer que $\exp[A] \in \operatorname{Sym}^+(p)$.
- c) Soit $u \in \mathbb{R}^p$. Montrer que $\exp[A] \odot (uu^T) \in \operatorname{Sym}^+(p)$.

Question 6. Soit $d \in \mathbb{N}^*$. On considère un *p*-uplet $(x_i)_{1 \le i \le p}$ d'éléments de \mathbb{R}^d et la matrice

$$\mathbf{A} = \left(\langle x_i, x_j \rangle \right)_{(i,j) \in [1,p]^2}$$

où $\langle a,b\rangle$ désigne le produit scalaire usuel entre deux vecteurs a et b de \mathbb{R}^d . On notera $|a| = \sqrt{\langle a,a\rangle}$ la norme de a.

- a) Montrer que $A \in Sym^+(p)$.
- b) On note $u \in \mathbb{R}^p$ le vecteur de coordonnées $\left(\exp\left(-\frac{|x_1|^2}{2}\right), \dots, \exp\left(-\frac{|x_p|^2}{2}\right)\right)$.

Montrer que $(\exp[A] \odot (uu^T))_{ij} = \exp(-\frac{|x_i - x_j|^2}{2})$ pour tout $(i, j) \in [[1, p]]^2$.

c) Soient $\lambda > 0$ et $K \in \mathcal{M}_p(\mathbb{R})$ la matrice définie par $K_{ij} = \exp\left(-\frac{|x_i - x_j|^2}{2\lambda}\right)$ pour tout $(i, j) \in [[1, p]]^2$. Montrer que $K \in \mathcal{M}_p(\mathbb{R})$ $\operatorname{Sym}^+(p)$.

Partie III.

Soit $\lambda > 0$ fixé. On considère ici l'espace $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} . Dans toute la suite, on désigne par \mathcal{E} le sous-espace vectoriel de $\mathscr{C}^0(\mathbb{R},\mathbb{R})$ (on ne demande pas de vérifier ce fait) défini par

$$\mathcal{E} = \left\{ f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}) \mid \exists (a, A) \in (\mathbb{R}_+^*)^2 \text{ tel que } \forall y \in \mathbb{R} \mid f(y) \mid \leq A \exp(-y^2/a) \right\}$$

Pour tout $x \in \mathbb{R}$, on note $\tau_x : \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ l'application définie pour tout $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ par

$$\tau_x(f)(y) = f(y - x)$$

pour tout $y \in \mathbb{R}$. Enfin, on définit la fonction $\gamma_{\lambda} : \mathbb{R} \to \mathbb{R}$ par

$$v_{\lambda}(v) = \exp(-v^2/\lambda)$$

 $\gamma_{\lambda}(y) = \exp(-y^2/\lambda)$ **Question 7.** Pour tout $(f,g) \in \mathcal{E}^2$, montrer que fg est intégrable sur \mathbb{R} .

Pour tous $f, g \in \mathcal{E}$, on définit

$$(f \mid g) = \int_{-\infty}^{+\infty} f(y)g(y) \, \mathrm{d}y$$

Question 8.

- a) Montrer que pour tout $f \in \mathcal{E}$, on a $(f \mid f) \ge 0$ avec égalité si et seulement si f = 0.
- b) Montrer que pour tout $x \in \mathbb{R}$, $\tau_x(\gamma_\lambda)$ appartient à \mathcal{E} .

Question 9.

a) Soit a > 0. Montrer qu'il existe $c \ge 0$ tel que pour tout $x \in \mathbb{R}$ on a

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{(y-x)^2}{\lambda}\right) \exp\left(-\frac{y^2}{a}\right) dy = c \exp\left(-\frac{x^2}{a+\lambda}\right)$$

Indication: On pourra montrer l'égalité

$$\frac{(y-x)^2}{\lambda} + \frac{y^2}{a} = \frac{a+\lambda}{a\lambda} \left(y - \frac{ax}{a+\lambda} \right)^2 + \frac{x^2}{a+\lambda}$$

b) Soit $g \in \mathcal{E}$. On considère $C(g) : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par

$$C(g)(x) = (\tau_x(\gamma_\lambda) \mid g)$$

Montrer que $C(g) \in \mathcal{E}$.

c) Montrer que $C: \mathcal{E} \to \mathcal{E}$ définit un endomorphisme de \mathcal{E} .

page 2 Lvcée Marcelin Berthelot

Partie IV.

Soit $\lambda > 0$ fixé. On considère maintenant l'ensemble $\mathcal G$ des fonctions g s'écrivant sous la forme $g = \sum_{i=1}^n \alpha_i \tau_{x_i}(\gamma_\lambda)$ où n est un entier strictement positif et $(x_i, \alpha_i)_{1 \le i \le n}$ est une famille d'éléments de $\mathbb R^2$:

$$\mathcal{G} = \left\{ \sum_{i=1}^{n} \alpha_{i} \tau_{x_{i}}(\gamma_{\lambda}) \mid n \in \mathbb{N}^{*}, \ \forall i \in \llbracket 1, n \rrbracket \ (x_{i}, \alpha_{i}) \in \mathbb{R} \times \mathbb{R} \right\}$$

On notera $\mathcal{H} = C(\mathcal{G})$ l'image de \mathcal{G} par l'endomorphisme C introduit dans la question 9b.

Question 10. Montrer que \mathcal{G} est un sous-espace vectoriel de \mathcal{E} et que c'est le plus petit sous-espace vectoriel de \mathcal{E} qui contient toutes les fonctions $\tau_x(\gamma_\lambda)$ pour $x \in \mathbb{R}$ arbitraire.

Question 11.

a) Montrer qu'il existe $c_{\lambda} > 0$ telle que pour tout $(x, x') \in \mathbb{R} \times \mathbb{R}$ on a

$$(\tau_x(\gamma_\lambda) \mid \tau_{x'}(\gamma_\lambda)) = c_\lambda \gamma_{2\lambda}(x - x')$$

Indication : on pourra remarquer que $\frac{1}{\lambda} \Big((y-x)^2 + (y-x')^2 \Big) = \frac{2}{\lambda} \Big(y - (x+x')/2 \Big)^2 + \frac{1}{2\lambda} (x'-x)^2$.

b) En déduire que pour tout $x \in \mathbb{R}$

$$C(\tau_x(\gamma_\lambda)) = c_\lambda \tau_x(\gamma_{2\lambda})$$

et que

$$\mathcal{H} = \left\{ \sum_{i=1}^{n} \alpha_{i} \tau_{x_{i}}(\gamma_{2\lambda}) \mid n \in \mathbb{N}^{*}, \forall i \in [[1, n]], (x_{i}, \alpha_{i}) \in \mathbb{R} \times \mathbb{R} \right\}$$

Question 12.

a) Soient $n \in \mathbb{N}^*$ et $(x_i)_{1 \le i \le n}$ une famille de réels telle que pour tous $i, j \in [[1, n]]$ on a $x_i \ne x_j$ lorsque $i \ne j$.

Montrer que la fonction $\sum_{i=1}^{n} \alpha_i \tau_{x_i}(\gamma_{2\lambda})$ est nulle si et seulement si $\alpha_i = 0$ pour tout $1 \le i \le n$ (*Indication : on pourra procéder par récurrence sur n*).

- b) En déduire qu'il existe une unique application linéaire D de \mathcal{H} dans \mathcal{G} telle que D \circ C(g) = g pour tout $g \in \mathcal{G}$ et C \circ D(h) = h pour tout $h \in \mathcal{H}$.
- c) Montrer que pour tout $h \in \mathcal{H}$, on a pour tout $x \in \mathbb{R}$ que $h(x) = (\tau_x(\gamma_\lambda) \mid D(h))$.

Question 13. Pour tout $(h_1, h_2) \in \mathcal{H} \times \mathcal{H}$, on note $(h_1 \mid h_2)_{\mathcal{H}} = c_{\lambda} (D(h_1) \mid D(h_2))$ où c_{λ} est introduit dans la question 11a.

- a) Vérifier que $(\cdot \mid \cdot)_{\mathcal{H}}$ définit un produit scalaire sur \mathcal{H} .
- b) Montrer que pour tous $x \in \mathbb{R}$ et $h \in \mathcal{H}$ on a $h(x) = (\tau_x(\gamma_{2\lambda}) \mid h)_{\mathcal{H}}$.
- c) Montrer que pour tout $h \in \mathcal{H}$ on a

$$||h||_{\infty} \leq ||h||_{\mathcal{H}}$$

où on a posé $||h||_{\infty} = \sup_{x \in \mathbb{R}} |h(x)|$ et $||h||_{\mathcal{H}} = (h \mid h)_{\mathcal{H}}^{1/2}$.

Partie V.

On fixe dans cette partie deux p-uplets $(x_i)_{i \in [\![1,p]\!]}$ et $(a_i)_{i \in [\![1,p]\!]}$ de réels. On suppose que les x_i sont deux à deux distincts. On note $\mathcal{S} = \left\{ h \in \mathcal{H} \ \middle| \ h(x_i) = a_i \right\}$ l'ensemble des $h \in \mathcal{H}$ qui valent a_i en x_i pour tout $i \in [\![1,p]\!]$ (on dira qu'une telle fonction est une interpolante). On note $J: \mathcal{H} \to \mathbb{R}$ défini par $J(h) = \frac{1}{2} ||h||_{\mathcal{H}}^2$ et $J_* = \inf \left\{ J(h) \ \middle| \ h \in \mathcal{S} \right\}$.

On veut montrer dans cette partie qu'il existe une unique interpolante $h_* \in \mathcal{S}$ qui atteint le minimum de J c'est-à-dire telle que $J(h_*) = J_*$. On notera $\mathcal{S}_* = \{h \in \mathcal{S} \mid J(h) = J_*\}$.

Lycée Marcelin Berthelot page 3

Question 14. Montrer que S_{*} a au plus un élément.

Question 15. Soient $\mathcal{H}_0 = \{ h \in \mathcal{H} \mid h(x_i) = 0 \ \forall i \in [[1, p]] \}$ et $\tilde{h} \in \mathcal{S}_*$ (on suppose ici \mathcal{S}_* non vide). Montrer que $(\tilde{h} \mid h_0)_{\mathcal{H}} = 0$ pour tout $h_0 \in \mathcal{H}_0$.

Question 16. On note $\mathcal{H}_0^{\perp} = \{ h \in \mathcal{H} \mid \forall h_0 \in \mathcal{H}_0 \ (h \mid h_0)_{\mathcal{H}} = 0 \}$ le sous-espace orthogonal à \mathcal{H}_0 dans \mathcal{H} .

- a) Montrer que $S_* = S \cap \mathcal{H}_0^{\perp}$.
- b) Montrer que \mathcal{H}_0^{\perp} contient le sous-espace vectoriel de \mathcal{H} engendré par les fonctions $\tau_{x_i}(\gamma_{2\lambda})$ pour $i \in [\![1,p]\!]$.

Question 17. Soient $\alpha \in \mathbb{R}^p$ (resp. $a \in \mathbb{R}^p$) le vecteur de coordonnées $(\alpha_i)_{i \in [\![1,p]\!]}$ (resp. $(a_i)_{i \in [\![1,p]\!]}$) et $h_{\alpha} = \sum_{i=1}^p \alpha_i \tau_{x_i}(\gamma_{2\lambda})$.

- a) Montrer que h_{α} est une interpolante si et seulement si $K\alpha = a$ où K est la matrice introduite dans la question 6 (ici dans le cas d = 1).
- b) Montrer que K est inversible.

Question 18. En déduire qu'il existe $\alpha_* \in \mathbb{R}^p$ tel que $\mathcal{S}_* = \{h_{\alpha_*}\}$ et calculer la valeur de J_* en fonction de K et a.

page 4 Lycée Marcelin Berthelot