Contrôle de mathématiques

Durée: 4 heures

Ce contrôle est constitué de deux problèmes indépendants.

Irrationnalité de certains réels (d'après EPITA 2021)

Le but de ce problème est de prouver l'irrationnalité des réels de la forme $\cos\left(\frac{\pi}{n+1}\right)$ pour n > 2 (on rappelle qu'un nombre réel est dit *rationnel* s'il appartient à \mathbb{Q} , et qu'il est dit *irrationnel* sinon). La première partie de ce problème traite du cas particulier où n = 4; le cas général est traité dans la seconde partie.

On rappelle que pour tout couple d'entiers $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, la fraction $\frac{p}{q}$ est dite *irréductible* si les entiers p et q sont premiers entre eux, autrement dit lorsque $\operatorname{pgcd}(p,q)=1$.

Partie I. Irrationnalité de $\cos\left(\frac{\pi}{5}\right)$

Question 1.

- a) Exprimer les valeurs de $\cos\left(\frac{4\pi}{5}\right)$, $\cos\left(\frac{6\pi}{5}\right)$ et $\cos\left(\frac{9\pi}{5}\right)$ en fonction de $\cos\left(\frac{\pi}{5}\right)$.
- b) Exprimer de même les valeurs de $\cos\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{7\pi}{5}\right)$ et $\cos\left(\frac{8\pi}{5}\right)$ en fonction de $\cos\left(\frac{3\pi}{5}\right)$.

Question 2.

- a) Déterminer les racines complexes de l'équation $z^5 + 1 = 0$.
- b) Donner leur somme, et en déduire que $\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$.

Question 3.

- a) Simplifier la quantité $2\cos\left(\frac{\pi}{5}\right)\cos\left(\frac{3\pi}{5}\right)$, et en déduire que $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$ sont les racines du polynôme $4X^2-2X-1$.
- b) En déduire une expression de $\cos\left(\frac{\pi}{5}\right)$ à l'aide du réel $\sqrt{5}$.

Question 4. Prouver que $\sqrt{5}$ est irrationnel, et en déduire que $\cos\left(\frac{\pi}{5}\right)$ est aussi irrationnel.

Partie II. Irrationnalité de
$$\cos\left(\frac{\pi}{n+1}\right)$$
 pour $n > 2$

On considère la suite de polynômes à coefficients réels (U_n) définie par les relations :

$$U_0 = 1$$
, $U_1 = 2X$ et $\forall n \ge 2$, $U_n = 2XU_{n-1} - U_{n-2}$

Question 5.

- a) Calculer les polynômes U₂, U₃ et U₄.
- b) Pour tout entier $n \in \mathbb{N}$, montrer que U_n est de degré n, et préciser son coefficient dominant.
- c) Pour tout entier $n \in \mathbb{N}$, déterminer la valeur de $U_n(0)$.
- d) Pour tout entier $n \in \mathbb{N}$, montrer que U_n est pair lorsque n est pair, et impair lorsque n est impair.

Lycée Marcelin Berthelot page 1

Question 6.

a) Pour tout $n \in \mathbb{N}$ et pour tout réel θ non multiple de π , démontrer la relation suivante :

$$U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta}$$

- b) Préciser les valeurs de $U_n(1)$ et de $U_n(-1)$ en fonction de n.
- c) En déduire que le polynôme U_n admet n racines distinctes qu'on précisera, et en déduire l'expression factorisée de U_n .

On convient d'introduire la suite de polynômes (V_n) définie par : $\forall n \in \mathbb{N}$, $V_n(X) = U_n(\frac{X}{2})$.

Question 7.

- a) Calculer les polynômes V_n pour $0 \le n \le 4$.
- b) Donner le degré et le coefficient dominant de V_n.
- c) Exprimer pour tout $n \ge 2$ le polynôme V_n en fonction de V_{n-1} et V_{n-2} et en déduire que les coefficients de V_n dans la base canonique appartiennent à \mathbb{Z} .
- d) En déduire que le coefficient de X^k dans U_n est un entier relatif multiple de 2^k .

Question 8.

- a) On considère une fraction irréductible $\frac{p}{q}$ (avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$) racine du polynôme V_n . En exploitant l'égalité $q^n V_n \left(\frac{p}{q}\right) = 0$, démontrer que q = 1, et en déduire qu'une racine rationnelle de V_n appartient nécessairement à \mathbb{Z} .
- b) En déduire que les seules racines rationnelles possibles de U_n appartiennent à $\left\{-\frac{1}{2},0,\frac{1}{2}\right\}$.

Question 9. Déduire des résultats précédents que $\cos\left(\frac{\pi}{n+1}\right)$ est irrationnel pour n > 2.

Question 10.

a) En exploitant la relation obtenue à la question 6a, montrer que la fonction polynomiale $x \mapsto U_n(x)$ est solution sur l'intervalle]–1,1[de l'équation différentielle :

$$(1-x^2)y'' - 3xy' + n(n+2)y = 0$$

b) En déduire que le polynôme \mathbf{U}_n vérifie la relation : $(1-\mathbf{X}^2)\mathbf{U}_n'' - 3\mathbf{X}\mathbf{U}_n' + n(n+2)\mathbf{U}_n = 0$.

Question 11. On convient de poser $U_n = \sum_{k=0}^n \lambda_k X^k$.

- a) Exprimer λ_{k+2} en fonction de λ_k et montrer que l'on a pour tout entier j tel que $0 \le 2j \le n$: $\lambda_{n-2j} = \frac{(-1)^j}{2^{2j}} \binom{n-j}{j} \lambda_n$.
- b) En déduire l'expression de U_n dans la base canonique.

Polynômes réels à racines toutes réelles (extrait de Mines PC 2021)

Notations

- Pour tout $k \in \llbracket [0, n \rrbracket]$ on notera $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ le coefficient binomial.
- On note $\mathscr{C}^{\infty}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^{∞} .
- On dit que a est un zéro d'ordre m de $f \in \mathscr{C}^{\infty}(\mathbb{R})$ si

$$f(a) = f'(a) = \dots = f^{(m-1)}(a) = 0$$
 et $f^{(m)}(a) \neq 0$.

– On note $D: \mathscr{C}^{\infty}(\mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R})$ l'opérateur de dérivation, i.e. D(f) = f'.

Partie I. Log-concavité des suites

Soit $(a_0, ..., a_n)$ une suite à valeurs réelles. On dira qu'elle est :

- unimodulaire s'il existe $j \in [[0,n]]$ tel que $a_0 \le a_1 \le \cdots \le a_j$ et $a_j \ge a_{j+1} \ge \cdots \ge a_n$;
- log-concave si pour tout $j \in [[1, n-1]]$ on a $a_i^2 \ge a_{j-1}a_{j+1}$;
- *ultra log-concave* si la suite $\left(\frac{a_k}{\binom{n}{k}}\right)_{0 \le k \le n}$ est log-concave.

Question 1. Soit $n \in \mathbb{N}$. Pour tout $k \in [0, n]$ on pose $b_k = \binom{n}{k}$. Montrer que la suite $(b_k)_{0 \le k \le n}$ est log-concave.

Question 2. Montrer que si la suite $(a_k)_{0 \le k \le n}$ est ultra log-concave, alors elle est log-concave.

Question 3. Montrer que si la suite $(a_k)_{0 \le k \le n}$ est strictement positive et log-concave, alors elle est unimodulaire.

Partie II. Polynômes réels à racines toutes réelles

Soit $P(X) = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{R}[X]$ avec $a_n \neq 0$ un polynôme réel de degré $n \geq 1$. Il est dit à racines toutes réelles si toutes ses racines complexes sont en fait réelles. Par convention, le polynôme nul sera lui aussi considéré à racines toutes réelles. On suppose dans cette partie que le polynôme P est à racines toutes réelles.

Question 4. Montrer que P' est à racines toutes réelles.

Indication : on pourra utiliser le théorème de Rolle en veillant aux multiplicités des racines.

Question 5. Montrer que $Q(X) = X^n P(1/X)$ est un polynôme à racines toutes réelles. *Indication : on commencera par préciser le degré de* Q(X).

Question 6. Pour $k \in [\![1,n-1]\!]$ on considère $Q_1(X) = P^{(k-1)}(X)$ puis $Q_2(X) = X^{n-k+1}Q_1\left(\frac{1}{X}\right)$ et enfin $Q(X) = Q_2^{(n-k-1)}(X)$. Montrer que Q(X) est un polynôme de degré au plus 2 à racines toutes réelles et en déduire que $(a_k)_{0 \le k \le n}$ est ultra log-concave.

Question 7. Soit $\alpha \in \mathbb{R}$. Montrer que $x \mapsto e^{\alpha x} D(e^{-\alpha x}P(x))$ est une fonction polynomiale à racines toutes réelles. *Indication : on pourra à nouveau utiliser le théorème de Rolle en considérant en outre le comportement en* $\pm \infty$.

Question 8. Soit $Q = \sum_{j=0}^{m} b_j X^j$ un autre polynôme à racines toutes réelles. Montrer que $R = \sum_{j=0}^{m} b_j P^{(j)}(X)$ est un polynôme

à racines toutes réelles.

Indication: on pourra raisonner par récurrence sur m.

Lycée Marcelin Berthelot page 3