Corrigé: matrices de distance euclidienne (Mines PC 2024)

1 - Matrices de Hadamard

- Les matrices $H_1 = \begin{pmatrix} 1 \end{pmatrix}$ et $H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ sont des matrices de Hadamard.
- Soit H une matrice de Hadamard, et H_1 la matrice obtenue en multipliant une colonne par -1. Les colonnes de H_1 restent orthogonales et de norme égale à \sqrt{n} , donc H_1 est aussi une matrice de Hadamard.

Soit H₂ la matrice obtenue en échangeant deux colonnes de H. Les colonnes de H₂ restent orthogonales entre elles et de

norme égale à \sqrt{n} , donc H_2 est aussi une matrice de Hadamard. Sachant que H^T est aussi une matrice de Hadamard, il en est de même si on réalise ces opérations sur les lignes.

3 ⊳ Soit H une matrice de Hadamard. Pour tout $j \in [[1, n]]$ tel que $H_{1,j} = -1$, multiplions la j^e colonne par -1. On obtient une matrice H' dont la première ligne n'est constituée que de 1, et cette matrice est de Hadamard d'après la question précédente.

Si $n \ge 2$, toutes les autres lignes de H' doivent être orthogonales à la première, et doivent donc comporter autant de 1 que de -1, ce qui impose à n d'être pair.

 $4 \triangleright$ Soit H une matrice de Hadamard d'ordre $n \ge 4$, et H' la matrice de Hadamard construite à la question précédente : sa première ligne ne comporte que des 1, et la seconde autant de 1 que de -1. Permutons les colonnes de H' de sorte de placer les n/2 coefficients de la seconde ligne égaux à 1 en premier. D'après la question 2 on obtient une matrice H" qui est toujours de Hadamard.

Considérons alors la troisième ligne de H", et notons $h_1, ..., h_n$ les coefficients qui s'y trouvent.

Cette ligne doit être orthogonale aux deux précédentes, donc $\sum_{i=1}^{n} h_i = 0$ et $\sum_{i=1}^{n/2} h_i - \sum_{i=n/2+1}^{n} h_i = 0$, ce qui impose $\sum_{i=1}^{n/2} h_i = 0$. L'entier n/2 doit donc être pair, ce qui impose à n d'être un problem n/2 doit donc être pair.

L'entier n/2 doit donc être pair, ce qui impose à n d'être un multiple de 4.

2 – Quelques résultats sur les endomorphismes auto-adjoints

- D'après le théorème spectral, f est ortho-diagonalisable : il existe une base orthonormée (e_1, \ldots, e_n) formée de vecteurs propres de $f: f(e_i) = \lambda_i e_i$.
- D'après la formule de Grassmann,

$$\dim(S \cap T_k) = \dim S + \dim T_k - \dim(T_k + S) = k + (n + 1 - k) - \dim(T_k + S) = n + 1 - \dim(T_k + S).$$

Or dim $(T_k + S) \le n$, donc dim $(S \cap T_k) \ge 1$ et ainsi $S \cap T_k \ne \{0\}$.

Soit donc $x \in S \cap T_k \setminus \{0\}$. Quitte à remplacer x par $\frac{x}{\|x\|}$, on peut supposer $\|x\| = 1$.

Puisque
$$x \in T_k$$
, posons $x = \sum_{i=k}^n x_i e_i$. Alors $f(x) = \sum_{i=k}^n \lambda_i x_i e_i$ et $\langle x \mid f(x) \rangle = \sum_{i=k}^n \lambda_i x_i^2 \geqslant \lambda_k \sum_{i=k}^n x_i^2 = \lambda_k ||x||^2 = \lambda_k$, donc $\max_{x \in S \cap T_k, \ ||x|| = 1} \langle x \mid f(x) \rangle \geqslant \lambda_k$. A fortiori, $\max_{x \in S, \ ||x|| = 1} \langle x \mid f(x) \rangle \geqslant \lambda_k$.

 $\mathbf{8} \vartriangleright \text{ La question précédente montre que pour tout } \mathbf{S} \in \pi_k, \max_{x \in S, \ \|x\| = 1} \langle x \mid f(x) \rangle \geqslant \lambda_k \text{ et donc } \min_{\mathbf{S} \in \pi_k} \left(\max_{x \in S, \ \|x\| = 1} \langle x \mid f(x) \rangle \right) \geqslant \lambda_k.$

Considérons maintenant le sous-espace vectoriel
$$S_k = \text{Vect}(e_1, \dots, e_k)$$
, et $x = \sum_{i=1}^k x_i e_i \in S_k$ un vecteur de norme 1. On a $\langle x \mid f(x) \rangle = \sum_{i=1}^k \lambda_i x_i^2 \leqslant \lambda_k \sum_{i=1}^k x_i^2 = \lambda_k \text{ donc } \max_{x \in S_k, \ ||x||=1} \langle x \mid f(x) \rangle \leqslant \lambda_k$, ce qui prouve que $\min_{S \in \pi_k} \left(\max_{x \in S_k, \ ||x||=1} \langle x \mid f(x) \rangle \right) \leqslant \lambda_k$.

D'où finalement l'égalité : $\min_{S \in \pi_k} \left(\max_{x \in S, ||x|| = 1} \langle x | f(x) \rangle \right) = \lambda_k$.

page 1 Lycée Marcelin Berthelot

 $\mathbf{9} \triangleright \text{ Soit } \mathbf{M} \in \mathcal{S}_n^+(\mathbb{R})$. D'après le théorème spectral, il existe $\mathbf{P} \in \mathcal{O}_n(\mathbb{R})$ et $\mathbf{D} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ tel que $\mathbf{M} = \mathrm{PDP}^{\mathrm{T}}$. Posons $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. Alors $M = (P\Delta)(\Delta P^T) = B^T B$ avec $B = \Delta P^T$.

Soit maintenant $M \in S_n(\mathbb{R})$ ne possédant qu'une seule valeur propre strictement positive λ , de multiplicité égale à 1, et uun vecteur propre unitaire associé à λ .

Posons N = $\lambda u u^{T}$ – M, et complétons (*u*) pour former une base orthonormée ($u = e_1, ..., e_n$) de vecteurs propres de M. On notera $f(e_i) = \lambda_i \leq 0$ pour $i \geq 2$.

Pour tout
$$x \in \mathbb{R}^n$$
, posons $x = \sum_{i=1}^n x_i e_i$. Alors $Nx = \lambda \langle u \mid x \rangle u - Mx = \lambda x_1 u - \sum_{i=1}^n \lambda_i x_i e_i = -\sum_{i=2}^n \lambda_i x_i e_i$ et $x^T N x = -\sum_{i=2}^n \lambda_i x_i^2 \ge 0$

donc $N \in \mathcal{S}_n^+(\mathbb{R})$, et d'après le point précédent, il existe $B \in \mathcal{M}_n(\mathbb{R})$ tel que $N = B^T B$.

3 – Caractérisation des MDE

10 ▷ On a $P^T = I_n - \frac{1}{n}(ee^T)^T = I_n - \frac{1}{n}ee^T = P$ donc P est symétrique.

On a Pe = e - $\frac{\|\mathbf{e}\|^2}{n}$ e = e - e = 0 et si $u \in \{\mathbf{e}\}^{\perp}$, P $u = u - \frac{\langle \mathbf{e} \mid u \rangle}{n}$ e = u donc P est la matrice canoniquement associée à la projection orthogonale sur Vect(e) $^{\perp}$.

$$\begin{aligned} \mathbf{11} & \rhd \quad \text{On a D} = \left(\|x_i - x_j\|^2 \right)_{1 \leq i, j \leq n'}, \text{Ce}^{\text{T}} = \left(\|x_i\|^2 \right)_{1 \leq i, j \leq n'}, \text{eC}^{\text{T}} = \left(\|x_j\|^2 \right)_{1 \leq i, j \leq n} \text{ et } \mathbf{M}_a^{\text{T}} \mathbf{M}_a = \left(\langle x_i \mid x_j \rangle \right)_{1 \leq i, j \leq n}. \\ \text{De l'égalité } \|x_i - x_j\|^2 = \|x_i\|^2 + \|x_j\|^2 - 2\langle x_i \mid x_j \rangle \text{ on tire alors : D} = \text{Ce}^{\text{T}} + \text{eC}^{\text{T}} - 2\mathbf{M}_A^{\text{T}} \mathbf{M}_A. \end{aligned}$$

P est la projection orthogonale sur $Vect(e)^{\perp}$ donc Pe = 0 et (en transposant) $e^{T}P = 0$. On en déduit déjà que $T(Ce^{T}) = 0$

Ainsi, $T(D) = PM_A^TM_AP = (M_AP)^T(M_AP)$, ce qui montre que $T(D) \in \mathcal{S}_n(\mathbb{R})$.

Ses valeurs propres sont positives puisque $T(D)x = \lambda x \implies \lambda ||x||^2 = ||M_A Px||^2$, et T(D)e = 0 (puisque Pe = 0). Ainsi, $T(D) \in \Omega_n$.

12 ▷ D'après la question 9, il existe $B \in \mathcal{M}_n(\mathbb{R})$ tel que $A = B^T B$. Pour $1 \le j \le n$, on note b_j la j^e colonne de la matrice B.

Les coefficients diagonaux de A sont alors les $\sum_{i=1}^{n} b_{ij}^2 = ||b_j||^2$.

Notons B_1, \ldots, B_n les points dont les coordonnées respectives dans la base canonique de \mathbb{R}^n sont les b_1, \ldots, b_n . Alors d'après la question précédente, K(A) est la matrice des distances euclidiennes de ces points, et ainsi $K(A) \in \Delta_n$.

13 ⊳ On reprend les notations de la question précédente.

Soit $A \in \Omega_n$. La question 12 a montré que K(A) est la matrice des distances des points B_1, \ldots, B_n . D'après La question 11, $T \circ K(A) = (M_B P)^T (M_B P) = (BP)^T (BP)$, car ici $M_B = B$. Ainsi, $T \circ K(A) = PB^T BP = PAP$.

Or $A \in \Omega_n$ donc Ae = 0, et puisque A est symétrique et que P est la projection orthogonale sur $Vect(e)^{\perp}$, AP = A et PA = A, donc $T \circ K(A) = A$.

14 > Si D est une MDE, la question 11 a montré que $T(D) = -\frac{1}{2}PDP$ appartient à Ω_n , donc est positive.

Réciproquement, supposons que $A = -\frac{1}{2}PDP$ soit positive. Puisque D est symétrique il en est de même de A, et puisque Pe = 0 on a A $\in \Omega_n$. Mais A = T(D) donc D = K(A) $\in \Delta_n$, autrement dit D est une MDE.

15 \triangleright Soit M une matrice symétrique à coefficients positifs, de diagonale nulle et ayant une unique valeur propre λ strictement positive d'espace propre de dimension 1 et de vecteur propre e.

D'après la question 9, en posant $u = \frac{1}{\sqrt{n}}e$, il existe $B \in \mathcal{M}_n(\mathbb{R})$ tel que $M = \lambda u u^T - B^T B = \frac{\lambda}{n}ee^T - B^T B$.

Sachant que Pe = 0 on a $-\frac{1}{2}PMP = \frac{1}{2}PB^TBP = \frac{1}{2}(BP)^T(BP)$, et cette dernière est positive puisque pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^{T}(BP)^{T}(BP)X = ||BPX||^{2} \ge 0$ donc d'après la question précédente, M est une MDE.

4 – Spectre des MDE

16 ⊳ Soit D une MDE. Cette matrice est symétrique réelle donc diagonalisable; la somme de ses valeurs propres est donc égale à sa trace, et puisque sa diagonale est nulle, $\sum_{i=1}^{n} \lambda_i = 0$.

page 2 Lvcée Marcelin Berthelot

17 ▷ D'après la question 14, la matrice $-\frac{1}{2}$ PDP est positive donc pour tout $x \in \mathbb{R}^n$, x^T PDP $x \le 0$. Mais lorsque $x \in \text{Vect}(e)^{\perp}$ on a Px = x et donc en transposant $x^{T}P = x^{T}$, ce qui donne $x^{T}Dx \le 0$.

18 ⊳ Posons S = Vect(e)[⊥]. On a dim S = n-1 donc d'après le théorème de Courant-Fischer, $\lambda_{n-1} \le \max_{x \in S} \|x\|_{1} = 1$ question précédente implique alors que $\lambda_{n-1} \leq 0$.

Les valeurs propres étant ordonnées par ordre croissant, on en déduit que $\sum_{k=0}^{n-1} \lambda_k \le 0$. D'après la question 16 on en déduit que $\lambda_n = -\sum_{k=0}^{n-1} \lambda_k \ge 0$. De plus, si on avait $\lambda_n = 0$, on aurait aussi $\sum_{k=0}^{n-1} \lambda_k = 0$ et s'agissant d'une somme de termes négatifs, ceci impliquerait

 $\lambda_1 = \cdots = \lambda_{n-1} = 0$. Mais alors on aurait D = 0, ce qui n'est pas. On a donc $\lambda_n > 0$

Problème inverse pour les MDE

19 \triangleright La matrice Λ est symétrique (car diagonale) donc D est symétrique. La matrice U est orthogonale donc D et Λ sont semblables : elles ont mêmes valeurs propres et les dimensions des sous-espaces propres sont identiques (donc λ_1 est valeur propre simple de D). Il reste à justifier que les coefficients de D sont positifs et que sa diagonale est nulle. Le coefficient de rang (i, j) de D vaut :

$$\sum_{k=1}^{n} \lambda_k \mathbf{U}_{k,i} \mathbf{U}_{k,j} = \frac{1}{n} \sum_{k=1}^{n} \lambda_k \mathbf{H}_{k,i} \mathbf{H}_{k,j} = \frac{\lambda_1}{n} \mathbf{H}_{1,i} \mathbf{H}_{1,j} + \frac{1}{n} \sum_{k=2}^{n} \lambda_k \mathbf{H}_{k,i} \mathbf{H}_{k,j}$$

Par hypothèse on a $H_{1,i} = H_{1,j} = 1$ et $H_{k,i}H_{k,j} \in \{-1,1\}$ donc $\sum_{k=1}^{n} \lambda_k U_{k,i}U_{k,j} \geqslant \lambda_1 + \sum_{k=2}^{n} \lambda_k = 0$. Les coefficients sont bien

Enfin, pour i = j on a $\sum_{k=1}^{n} \lambda_k U_{k,i}^2 = \frac{1}{n} \sum_{k=1}^{n} \lambda_k = 0$. la diagonale est bien nulle.

20 ⊳ Pour appliquer la question 15, il reste à vérifier que e est vecteur propre pour la valeur propre λ_1 . Pour ce faire on observe que la première ligne de H est égale à e^T. Comme toutes les lignes de H sont orthogonales entre elles, on a donc

He =
$$\begin{pmatrix} n \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, puis Λ He = $\lambda_1 \begin{pmatrix} n \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, et enfin H^T Λ He = $\lambda_1 n$ e. Ainsi, De = λ_1 e et d'après la question 15, D est une MDE.

D est une MDE de spectre (5,-1,-2,-2).

La calcul donne
$$D = \frac{1}{4} \begin{pmatrix} 0 & 8 & 6 & 6 \\ 8 & 0 & 6 & 6 \\ 6 & 6 & 0 & 8 \\ 6 & 6 & 8 & 0 \end{pmatrix}.$$

page 3 Lycée Marcelin Berthelot