Corrigé: étude d'équations fonctionnelles (Ecrin P 1995)

Partie I.

Question 1. Si P est un polynôme constant on a $\Delta(P) = 0$ donc deg $\Delta(P) = -\infty$.

Si P n'est pas constant, posons $P = \sum_{k=0}^{n} a_k X^k$, avec $n \ge 1$ et $a_n \ne 0$.

$$P(X+1) = \sum_{i=0}^{n} a_i (X+1)^i = \sum_{i=0}^{n} \sum_{k=0}^{i} a_i \binom{i}{k} X^k = \sum_{k=0}^{n} \sum_{i=k}^{n} a_i \binom{i}{k} X^k \text{ donc } P(X+1) - P(X) = \sum_{k=0}^{n} b_k X^k \text{ avec } b_k = \sum_{i=k}^{n} a_i \binom{i}{k} - a_k.$$
 On observe alors que $b_n = 0$ et $b_{n-1} = na_n \neq 0$ donc $\Delta(P)$ est de degré $n-1 = \deg P - 1$.

Question 2. La question précédente montre que deg $P \ge 1 \implies \Delta(P) \ne 0$ donc Ker $\Delta = E_0$.

Question 3. λ est valeur propre si et seulement s'il existe $P \neq 0$ tel que $\Delta(P) = \lambda P$. Si $\lambda \neq 0$ ceci implique que deg $\Delta(P) = \lambda P$. $\deg P$, ce qui n'est possible que si P = 0 d'après la question 1. On en déduit que 0 est la seule valeur propre de Δ , son sous-espace propre étant $Ker \Delta = E_0$.

Question 4.

- a) On a $E_n = \text{Vect}(1, X, ..., X^n)$ donc $\Delta(E_n) = \text{Vect}(\Delta(X), ..., \Delta(X^n))$ (puisque $\Delta(1) = 0$). D'après la question 1 la famille $(\Delta(X),...,\Delta(X^n))$ est échelonnée en degré et engendre E_{n-1} , donc $\Delta(E_n) = E_{n-1}$.
- b) Soit $Q \in E_{n-1}$. D'après ce qui précède il existe $P_0 \in E_n$ tel que $\Delta(P_0) = Q$. Pour tout $P \in E$ on a $\Delta(P) = Q \iff \Delta(P) = Q$ $\Delta(P_0) \iff \Delta(P-P_0) = 0 \iff P-P_0 \in \text{Ker}\,\Delta = E_0 \text{, donc l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble des polynômes } P \text{ v\'erifiant } \Delta(P) = Q \text{ est l'ensemble } \Delta(P) = Q \text{$ $\{P_0 + \lambda \mid \lambda \in \mathbb{R}\}$. Il reste à observer que parmi ces polynômes seul le polynôme $P = P_0 - P_0(0)$ vérifie la condition P(0) = 0pour conclure.

Question 5. D'après ce qui précède on peut chercher A sous la forme $A = aX^3 + bX^2 + cX$. On calcule $A(X + 1) - A(X) = aX^3 + bX^2 + cX$. $3aX^2 + (3a+2b)X + (a+b+c)$ donc $a = \frac{1}{3}$, $b = -\frac{1}{2}$, $c = \frac{1}{6}$.

Par télescopage $S(n) = A(n+1) - A(0) = A(n+1) = \frac{1}{3}(n+1)^3 - \frac{1}{2}(n+1)^2 + \frac{1}{6}(n+1) = \frac{n(n+1)(2n+1)}{6}$.

Partie II.

Question 6. Pour tout x > 0, $T(f_n)(x) = \cos(2\pi n(x+1)) - \cos(2\pi nx) = 0$ car $2\pi n \equiv 0 \mod (2\pi)$ donc $f_n \in \text{Ker } T$.

Montrons par récurrence sur $n \in \mathbb{N}$ que la famille (f_0, f_1, \dots, f_n) est libre.

- Si n = 0, la famille (f_0) est libre car f_0 n'est pas la fonction nulle.
- Si $n \ge 1$, supposons la famille $(f_0, f_1, \dots, f_{n-1})$ libre, et raisonnons par l'absurde en supposant la famille (f_0, f_1, \dots, f_n) liée :

il existerait alors des scalaires non tous nuls (car f_n n'est pas la fonction nulle) $\lambda_0, \dots, \lambda_{n-1}$ tels que $f_n = \sum_{k=0}^{n-1} \lambda_k f_k$. En dérivant deux fois on obtient $(2\pi n)^2 f_n = \sum_{k=0}^{n-1} \lambda_k (2\pi k)^2 f_k$ donc $0 = \sum_{k=0}^{n-1} 4\pi^2 (n^2 - k^2) \lambda_k f_k = 0$, ce qui contredit la liberté

de cette famille. La récurrence se propage.

Ainsi, si Ker T était de dimension finie n, une famille libre ne pourrait comporter plus de n éléments, en conséquence de quoi la famille $(f_0, f_1, ..., f_n)$ serait liée. Ker T est donc de dimension infinie.

Question 7. Procédons par analyse/synthèse.

Si une telle fonction f existe, alors pour tout x > 0, pour tout $k \in \mathbb{N}$, f(x+k+1) - f(x+k) = g(x+k) donc pour tout $n \in \mathbb{N}^*$, pour tout $x \in]0,1]$, $f(n+x)-f(x)=\sum_{k=0}^{n-1}g(x+k)$. On en déduit que f est nécessairement définie sur tout intervalle de type

$$]n, n+1]$$
 $(n \in \mathbb{N})$ par la relation $f(x) = \phi(x-n) + \sum_{k=0}^{n-1} g(x-n+k)$.

page 1 Lycée Marcelin Berthelot

Réciproquement, considérons la fonction f définie sur $]0,+\infty[$ par :

- pour tout $x \in]0,1], f(x) = \phi(x);$
- pour tout $n \in \mathbb{N}$, pour tout $x \in [n, n+1]$, $f(x) = \phi(x-n) + \sum_{k=0}^{n-1} g(x-n+k)$.

Alors pour tout $n \in \mathbb{N}$, pour tout $x \in [n, n+1]$ on a $x+1 \in [n+1, n+2]$ donc

$$f(x+1) = \phi((x+1) - (n+1)) + \sum_{k=0}^{n} g((x+1) - (n+1) + k) = \phi(x+n) \sum_{k=0}^{n} g(x-n+k) = f(x) + g(x)$$

soit T(f) = g.

Cette question met en évidence un antécédent de g par T pour tout $g \in F$, donc T est surjective.

Question 8. $f \in F(\lambda) \iff \forall x > 0$, $f(x+1) = (\lambda+1)f(x)$. Nécessairement f est alors défini sur tout intervalle [n, n+1] $(n \in \mathbb{N})$ par la relation $f(x) = f(x-n)(\lambda+1)^n$. En imposant en plus à f d'être constante égale à 1 sur [0,1] on obtient $f(x) = (\lambda+1)^n$.

La fonction f définie sur $]0,+\infty[$ par les relations précédentes est non nulle et vecteur propre de T pour la valeur propre λ , donc tout réel est valeur propre de T.

Partie III.

Question 9.

a) $T(\delta) = T(\phi) - T(\psi) = 0$ donc pour tout x > 0, $\delta(x + 1) = \delta(x)$. On en déduit par récurrence que pour tout $x \in [0, 1]$, pour tout $n \in \mathbb{N}$, $\delta(x) = \delta(x + n)$. En particulier, pour tout $n \in \mathbb{N}^*$, $\delta(n) = \delta(1) = \phi(1) - \psi(1) = a - a = 0$.

b) Soit $x \in]0,1]$. On a $\delta(x+n) = \varphi(x+n) - \psi(x+n) \leqslant \varphi(n+1) - \psi(n)$ car φ et ψ sont croissantes. De plus, $\varphi(n+1) - \psi(n) = T(\varphi)(n) + \varphi(n) - \psi(n) = \frac{1}{n} + \delta(n) = \frac{1}{n}$, donc $\delta(x) \leqslant \frac{1}{n}$.

De même, $\delta(x+n) \geqslant \phi(n) - \psi(n+1) = \delta(n) - T(\psi)(n) = -\frac{1}{n} \operatorname{donc} - \frac{1}{n} \leqslant \delta(x) \leqslant \frac{1}{n}$.

En faisant tendre n vers $+\infty$ on en déduit que pour tout $x \in]0,1]$, $\delta(x) = 0$, puis, à l'aide de la relation $\delta(x+n) = \delta(x)$ on étend ce résultat par récurrence à tout intervalle]n,n+1] $(n \in \mathbb{N})$, donc à $]0,+\infty[$. Ceci prouve que $\phi = \psi$.

Question 10. Pour tout $x \in]0,1]$, $\frac{1}{x} = f_a(x+1) - f_a(x) \leqslant f_a(2) - f_a(x)$ donc $f_a(x) \leqslant f_a(2) - \frac{1}{x}$. En faisant tendre x vers 0 on obtient que $\lim_{n \to \infty} f_a(x) = -\infty$.

obtient que $\lim_{0} f_a(x) = -\infty$. Par télescopage on établit que $f_a(n) = f_a(1) + \sum_{k=1}^{n-1} \frac{1}{k}$ et puisque la série $\sum \frac{1}{n}$ est positive et divergente, $\lim_{+\infty} f_a(n) = +\infty$.

La fonction f_a étant croissante, on a pour tout x > 0, $f_a(x) \ge f_a(\lfloor x \rfloor)$ et donc $\lim_{+\infty} f_a(x) = +\infty$.

Question 11.

a) On fixe x > 0. $u_n(x) = \frac{x}{n(n+x)} = O\left(\frac{1}{n^2}\right)$ donc la série de fonctions $\sum u_n$ converge simplement sur $]0, +\infty[$.

b) On calcule
$$T(f_a)(x) = f_a(x+1) - f_a(x) = \frac{1}{x} - \frac{1}{x+1} + \sum_{n=1}^{+\infty} \left(u_n(x+1) - u_n(x) \right) = \frac{1}{x} - \frac{1}{x+1} + \sum_{n=1}^{+\infty} \left(\frac{1}{n+x} - \frac{1}{n+1+x} \right).$$

Par télescopage, $\sum_{n=1}^{N} \left(\frac{1}{n+x} - \frac{1}{n+1+x} \right) = \frac{1}{x+1} - \frac{1}{N+1+x}$ donc en faisant tendre N vers $+\infty$ on obtient $T(f_a)(x) = \frac{1}{x}$.

On a
$$f_a(1) = a - 1 + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
 et là encore par télescopage $f_a(1) = a$.

Enfin, f_a est une somme de fonctions croissantes donc est croissante. Il s'agit donc d'une fonction de F vérifiant les conditions $C_1(a)$, sont unicité étant assurée par la question 9.

Question 12. Soit $\alpha > 0$. Sur l'intervalle $]0, \alpha]$ la fonction u_n est positive et croissante donc $||u_n||_{\infty} = u_n(\alpha) = O\left(\frac{1}{n^2}\right)$. La convergence de $\sum u_n$ est normale donc uniforme sur $]0, \alpha]$. Les fonctions u_n étant continues sur $]0, \alpha]$, la fonction f_a est elle-même continue sur cet intervalle, puis par recouvrement sur $]0, +\infty[$.

Question 13. Les fonctions u_n sont de classe \mathscr{C}^1 sur $]0,+\infty[$ et $u_n'(x)=\frac{1}{(n+x)^2}$. Sur cet intervalle on a $||u_n'||_{\infty}=\frac{1}{n^2}$ donc la convergence de $\sum u_n'$ est normale et par suite uniforme sur $]0, +\infty[$ On en déduit que f_a est de classe \mathscr{C}^1 sur $]0, +\infty[$ et que $f_a'(x) = \frac{1}{x^2} + \sum_{n=1}^{+\infty} u_n'(x) = \sum_{n=0}^{+\infty} \frac{1}{(n+x)^2}$.

Partie IV.

Question 14. On a pour tout x > 0 $g(x+1) - g(x) = \ln(x)$ et g est dérivable donc $g'(x+1) - g'(x) = \frac{1}{x}$, soit $T(g')(x) = \frac{1}{x}$. En posant a = g'(1) on en déduit que g' vérifie $C_1(a)$.

Question 15. La condition g(1) = 0 montre que si g vérifie C_2 alors pour tout x > 0, $g(x) = \int_{1}^{x} f_a(t) dt = a(x-1) + \int_{1}^{x} f_0(t) dt$, et alors $a = g(2) - \int_{1}^{2} f_0(t) dt$. Mais $g(2) - g(1) = \ln(1)$ donc g(2) = 0, et ainsi $a = -\int_{1}^{2} f_0(t) dt$.

Réciproquement, considérons la fonction $g: x \mapsto a(x-1) + \int_{\cdot}^{x} f_0(t) dt$, et montrons qu'elle vérifie C_2 :

•
$$g(x+1)-g(x) = a + \int_{1}^{x+1} f_0(t) dt - \int_{1}^{x} f_0(t) dt = \int_{2}^{x+1} f_0(t) dt - \int_{1}^{x} f_0(t) dt = \int_{1}^{x} f_0(t) d$$

- g est de classe \mathscr{C}^1 car f_0 est continue, et $g' = a + f_0 = f_a$ est croissante.

Nous avons bien par analyse/synthèse prouvé que cette fonction g est bien la seule qui vérifie C_2 .

Question 16. La question 11 a prouvé la convergence uniforme de la série de fonctions $\sum u_n$ sur]0,2] donc en particulier sur [1,2]. Le théorème d'intégration nous permet d'intégrer terme à terme sur [1,2] pour obtenir :

$$a = \ln 2 - \sum_{n=1}^{+\infty} \int_{1}^{2} \left(\frac{1}{n} - \frac{1}{n+t} \right) dt = \ln 2 - \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \ln(n+2) + \ln(n+1) \right).$$

Ainsi on a
$$a = \lim_{N \to +\infty} \left(\ln 2 + \sum_{n=1}^{N} \ln \left(\frac{n+2}{n+1} \right) - \sum_{n=1}^{N} \frac{1}{n} \right) = \lim_{N \to +\infty} \left(\sum_{n=1}^{N+1} \ln \left(\frac{n+1}{n} \right) - \sum_{n=1}^{N} \frac{1}{n} \right) = \lim_{N \to +\infty} \left(\sum_{n=1}^{N} \left(\ln \left(\frac{n+1}{n} \right) - \frac{1}{n} \right) + \ln \left(\frac{N+2}{N+1} \right) \right)$$

ce qui donne bien $a = \sum_{n=1}^{\infty} \left(\ln \left(\frac{n+1}{n} \right) - \frac{1}{n} \right)$ en passant à la limite.

Question 17. Fixons x > 0. De la même façon la convergence de $\sum u_n$ est uniforme sur [1,x], ce qui nous permet d'intégrer terme à terme sur [1,x]:

$$g(x) = a(x-1) - \ln x + \sum_{n=1}^{+\infty} \int_{1}^{x} u_n(t) dt = a(x-1) - \ln x + \sum_{n=1}^{+\infty} \left(\frac{x-1}{n} - \ln(n+x) + \ln(n+1) \right)$$

et compte tenu de la valeur de a obtenue à la question précédente on obtient finalement :

$$g(x) = -\ln x + \sum_{n=1}^{+\infty} \left(x \ln \left(\frac{n+1}{n} \right) - \ln \left(\frac{n+x}{n} \right) \right).$$

Partie V.

Question 18. Si une fonction h vérifie les conditions C_3 alors, en posant $g = \ln h$ on a :

- $\forall x > 0$, $g(x+1) = g(x) = \ln x$;
- g(1) = 0;

• g est dérivable et $g' = \frac{h'}{h}$ est croissante donc g vérifie C_2 . Ainsi, la seule fonction h qui puisse vérifier C_3 est définie par : $\forall x > 0$, $h(x) = e^{g(x)}$.

Réciproquement, il est très simple de vérifier qu'une fonction définie ainsi vérifie bien C_3 .

En particulier on a pour tout $n \in \mathbb{N}^*$, h(n+1) = nh(n) et h(1) = 1, ce qui permet d'établir sans peine par récurrence que h(n) = (n-1)!.

Lycée Marcelin Berthelot page 3 Question 19. Fixons x > 0. On a $\ln(v_n(x)) = x \ln(n+1) + \sum_{k=1}^n \ln k - \sum_{k=0}^n \ln(x+k) = -\ln x + x \ln(n+1) - \sum_{k=1}^n \ln\left(\frac{x+k}{k}\right)$. Par télescopage on a $\ln(n+1) = \sum_{k=1}^n \left(\ln(k+1) - \ln k\right) = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right) \operatorname{donc} \ln\left(v_n(x)\right) = -\ln x + \sum_{k=1}^n \left(x \ln\left(\frac{k+1}{k}\right) - \ln\left(\frac{x+k}{k}\right)\right)$ et en passant à la limite on obtient $\lim_{n \to +\infty} \ln(v_n(x)) = g(x)$ d'après la question 17. Par continuité de la fonction exponentielle on en déduit que $\lim_{n \to +\infty} v_n(x) = e^{g(x)} = h(x)$.

Question 20.

a) Pour tout $t \in \left[0, \frac{\pi}{2}\right]$ on a $0 \le \sin t \le 1$ donc $0 \le (\sin t)^{n+1} \le (\sin t)^n$. Par positivité de l'intégrale on en déduit que $0 \le I_{n+1} \le I_n$: la suite (I_n) est positive et décroissante.

En particulier, $0 \le I_{2n+1} \le I_{2n} \le I_{2n-1}$, soit encore $1 \le \frac{I_{2n}}{I_{2n+1}} \le \frac{I_{2n-1}}{I_{2n+1}}$.

Réalisons une intégration par parties :

$$\begin{split} \mathbf{I}_n &= \int_0^{\frac{\pi}{2}} (\sin t) (\sin t)^{n-1} \, \mathrm{d}t = \left[-(\cos t) (\sin t)^{n-1} \right]_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} (\cos t)^2 (\sin t)^{n-2} \, \mathrm{d}t \\ &= (n-1) \int_0^{\frac{\pi}{2}} (1 - (\sin t)^2) (\sin t)^{n-2} \, \mathrm{d}t = (n-1) (\mathbf{I}_{n-2} - \mathbf{I}_n) \end{split}$$

donc $nI_n = (n-1)I_{n-2}$. En particulier, $\frac{I_{2n-1}}{I_{2n+1}} = \frac{2n+1}{2n}$ donc $1 \le \frac{I_{2n}}{I_{2n+1}} \le 1 + \frac{1}{2n}$ donc $\lim \frac{I_{2n}}{I_{2n+1}} = 1$.

b) Les relations $I_{2n} = \frac{2n-1}{2n}I_{2n-2}$ et $I_{2n+1} = \frac{2n}{2n+1}I_{2n-1}$ permettent de prouver par récurrence que

$$I_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$
 et $I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}$

c)
$$v_n\left(\frac{1}{2}\right) = \frac{\sqrt{n+1}\,n!}{\frac{1}{2}\left(\frac{1}{2}+1\right)\cdots\left(\frac{1}{2}+n\right)} = \frac{2^{n+1}\,\sqrt{n+1}\,n!}{1\times3\times\cdots\times(2n+1)} = \frac{2\sqrt{n+1}\,(2^nn!)^2}{(2n+1)!} \text{ et } \frac{\mathrm{I}_{2n+1}}{\mathrm{I}_{2n}} = \frac{2}{\pi}\frac{(2n+1)(2^nn!)^4}{(2n+1)!^2} \text{ donc}$$

$$v_n\left(\frac{1}{2}\right)^2 = \pi\left(\frac{2n+2}{2n+1}\right)\frac{\mathrm{I}_{2n+1}}{\mathrm{I}_{2n}}.$$

En passant à la limite on obtient $h\left(\frac{1}{2}\right)^2 = \pi$ et, h étant positive, $h\left(\frac{1}{2}\right) = \sqrt{\pi}$.

Remarque. Ce n'est pas démontré dans ce problème, mais il se trouve que cette fonction h n'est autre que la fonction Γ d'Euler, définie sur $]0,+\infty[$ par $\Gamma(x)=\int_0^{+\infty}t^{x-1}\,\mathrm{e}^{-t}\,\mathrm{d}t$, et dont nous reparlerons lors du chapitre consacré aux intégrales à paramètre. Ce problème démontre en particulier la relation non triviale $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

page 4 Lycée Marcelin Berthelot