Corrigé : étude de l'application $M \mapsto AM - MA$ (CCINP MP 2012)

Partie I – Étude du cas n = 2

Q1. Pour tout $M, N \in \mathcal{M}_n(\mathbb{R})$, pour tout $\lambda \in \mathbb{R}$, $\phi_A(\lambda M + N) = A(\lambda M + N) - (\lambda M + N)A = \lambda(AM - MA) + (AN - NA) = \lambda \phi_A(M + \phi_A(N))$ donc ϕ_A est linéaire.

On a $\varphi_A(I) = A - A = 0$ et $\varphi_A(A) = A^2 - A^2 = 0$ donc I et A appartiennent à Ker φ_A .

Q2. On calcule successivement $\phi_A(E_{1,1}) = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix}$, $\phi_A(E_{2,2}) = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$, $\phi_A(E_{1,2}) = \begin{pmatrix} -c & a-d \\ 0 & c \end{pmatrix}$, $\phi_A(E_{2,1}) = \begin{pmatrix} b & 0 \\ d-a & -b \end{pmatrix}$. La matrice de ϕ_A dans la base $(E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$ est donc

$$\mathbf{U} = \begin{pmatrix} 0 & 0 & -c & b \\ 0 & 0 & c & -b \\ -b & b & a-d & 0 \\ c & -c & 0 & d-a \end{pmatrix}.$$

- Q3. Le polynôme caractéristique de φ_A vaut donc $\det(xI-U) = (calcul) = x^2(x^2-(d-a)^2-4bc)$.
- **Q4.** Traitons plusieurs cas:
 - si $(d-a)^2 + 4bc > 0$, $\chi_{\varphi_A} = X^2(X-\delta)(X+\delta)$ avec $\delta = \sqrt{(d-a)^2 + 4bc}$, soit deux valeurs propres simples et une valeur propre double, en l'occurence 0.

Mais la première question nous a permis de constater que $Vect(I,A) \subset Ker \, \phi_A$ et puisqu'on suppose que A n'est pas la matrice d'une homothétie, dim Vect(I,A) = 2 et ainsi dim $Ker \, \phi_A = 2$, ce qui montre que ϕ_A est diagonalisable;

- si $(d-a)^2 + 4bc = 0$, $\chi_{\varphi_A} = X^4$. Mais $\varphi_A \neq 0$ donc φ_A n'est pas diagonalisable;
- enfin, si $(d-a)^2+4bc<0$, $\chi_{\phi_{\rm A}}$ n'est pas scindé donc $\phi_{\rm A}$ ne peut être diagonalisable.
- **Q5.** Le polynôme caractéristique de A est $\chi_A = X^2 (a+d)X + (ad-bc)$. Traitons là encore trois cas :
 - si $(a+d)^2-4(ad-bc)>0$, le polynôme χ_A est scindé à racines simples donc A est diagonalisable;
 - si $(a+d)^2 4(ad-bc) = 0$, $\chi_A = (X-\delta)^2$ avec $\delta = \frac{a+d}{2}$, mais A n'est pas la matrice d'un homothétie donc A n'est pas diagonalisable;
 - si $(a+d)^2 4(ad-bc) < 0$, le polynôme χ_A n'est pas scindé donc A n'est pas diagonalisable.

Ainsi, A est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ si et seulement si $(a+d)^2-4(ad-bc)>0$, soit encore $(a-d)^2+4bc>0$. D'après la question précédente, on a bien que φ_A est diagonalisable si et seulement si A est diagonalisable.

Partie II – Étude du cas général

Q6.

- a) On calcule sans peine $DE_{i,j} = \lambda_i E_{i,j}$ et $E_{i,j} D = \lambda_j E_{i,j}$ donc $DE_{i,j} E_{i,j} D = (\lambda_i \lambda_j) E_{i,j}$.
- b) Par définition de P on a A = PDP⁻¹ donc $\varphi_A(B_{i,j}) = P(DE_{i,j} E_{i,j}D)P^{-1} = (\lambda_i \lambda_j)B_{i,j}$. La matrice $B_{i,j}$ étant non nulle, c'est un vecteur propre de φ_A pour la valeur propre $\lambda_i \lambda_j$.
- c) L'application $M \mapsto PMP^{-1}$ est un automorphisme de $\mathcal{M}_n(\mathbb{R})$ (son inverse est $M \mapsto P^{-1}MP$) donc l'image de la base canonique $(E_{i,j})$, autrement dit la famille $(B_{i,j})$, est encore une base de $\mathcal{M}_n(\mathbb{R})$. D'après la question précédente cette base est constituée de vecteurs propres de φ_A , donc cet endomorphisme est diagonalisable.

Q7.

- *a)* Puisque φ_A est supposée diagonalisable dans $\mathcal{M}_n(\mathbb{R})$, toutes ses valeurs propres sont réelles.
- b) Une matrice et sa transposée ont même déterminant donc A et A^T ont même polynôme caractéristique. Ainsi, si z est valeur propre de A, elle est aussi valeur propre de A^T .
- c) Puisque A est à coefficients réels, si z est racine de χ_A , c'est aussi le cas de \overline{z} . Il existe donc $X \in \mathbb{C}^n$, $X \neq 0$ et $Y \in \mathbb{C}^n$, $Y \neq 0$ tels que AX = zX et $A^TY = \overline{z}Y$.

On calcule alors $\phi_A(XY^T) = (AX)Y^T - X(Y^TA) = (AX)Y^T - X(A^TY)^T = zXY^T - \overline{z}XY^T = (z - \overline{z})XY^T.$

Le coefficient de rang (i, j) de la matrice XY^T vaut $x_i y_j$ et puisque $X \neq 0$ et $Y \neq 0$ il existe $(i, j) \in [1, n]^2$ tel que $x_i y_j \neq 0$, soit $XY^T \neq 0$. Ceci montre que XY^T est vecteur propre de φ_A pour la valeur propre $z - \overline{z}$.

Lycée Marcelin Berthelot page 1

Q8. Soit z une valeur propre, réelle ou complexe, de A. La question précédente montre que $z - \overline{z}$ est valeur propre de φ_A . Mais cet endomorphisme de $\mathcal{M}_n(\mathbb{R})$ est supposé diagonalisable donc toutes ses valeurs propres sont réelles. Ainsi, $z - \overline{z} \in \mathbb{R}$. Mais par ailleurs, $z - \overline{z} \in i\mathbb{R}$ donc nécessairement, $z - \overline{z} = 0$, soit $z \in \mathbb{R}$. A possède donc au moins une valeur propre réelle.

- **Q9.** On a $\phi_A(P_{i,j}) = \lambda_{i,j}P_{i,j}$, soit $AP_{i,j} P_{i,j}A = \lambda_{i,j}P_{i,j}$. On en déduit en multipliant à droite par X que $AP_{i,j}X \lambda P_{i,j}X = \lambda_{i,j}P_{i,j}X$, soit $AP_{i,j}X = \mu_{i,j}P_{i,j}X$ avec $\mu_{i,j} = \lambda_{i,j} + \lambda$.
- **Q10.** On dispose ainsi d'une famille de n^2 vecteurs $Y_{i,j} = P_{i,j}X$ de \mathbb{R}^n qui sont ou bien nuls, ou bien vecteurs propres de A. Nous allons montrer que cette famille est génératrice de \mathbb{R}^n , ce qui va nous permettre d'en extraire une base formée de vecteurs propres de A, ce qui nous permettra de conclure que A est diagonalisable.

Soit donc $Y \in \mathbb{R}^n$. Puisque X est non nul, il existe une matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que MX = Y. Puisque $(P_{i,j})$ forme une base

de $\mathcal{M}_n(\mathbb{R})$, il existe des coefficients $\alpha_{i,j}$ tels que $M = \sum_{i=1}^n \sum_{j=1}^n \alpha_{i,j} P_{i,j}$ et alors $Y = \sum_{i=1}^n \sum_{j=1}^n \alpha_{i,j} Y_{i,j}$: la famille des $(Y_{i,j})$ est bien génératrice, et A est diagonalisable.

Partie III – Étude des vecteurs propres de φ_A associés à la valeur propre 0

Q11. Supposons la famille $(I_n, A, ..., A^{m-1})$ liée : il existe $(\lambda_0, ..., \lambda_{m-1}) \neq (0, ..., 0)$ tel que $\sum_{k=0}^{m-1} \lambda_k A^k = 0$. Le polynôme $\sum_{k=0}^{m-1} a_k X^k$ est non nul et annule A, ce qui contredit le caractère minimal de m. Cette famille est donc libre.

Considérons maintenant un polynôme P quelconque, et effectuons la division euclidienne de P par M: P = MQ + R avec $\deg R < m$.

On a P(A) = M(A)Q(A) + R(A) = R(a) car M(A) = 0, et $R(A) \in Vect(I_n, A, ..., A^{m-1})$ puisque deg R < m. Ceci montre que $(I_n, A, ..., A^{m-1})$ est une famille génératrice de $\mathbb{R}[A]$, et donc une base de cet espace.

Q12. Pour tout polynôme $P \in \mathbb{R}[X]$ les matrices A et P(A) commutent donc $\varphi_A(P(A)) = 0$, soit $P(A) \in \text{Ker } \varphi_A$. Ainsi, $\dim(\operatorname{Ker} \varphi_{A}) \geqslant \dim \mathbb{R}[A] = m.$

Q13.

a) Supposons la famille (e) liée : il existe $\lambda_1,\ldots,\lambda_n)\neq (0,\ldots,0)$ tel que $\sum_{i=1}^n\lambda_ie_i=0_{\mathbb E}$. Considérons le plus grand entier k tel que $\lambda_k\neq 0$. Alors $\sum_{i=1}^k\lambda_ie_i=0_{\mathbb E}$, soit $\sum_{i=1}^k\lambda_iu^{n-i}(y)=0_{\mathbb E}$.

Composons par u^{k-1} : $\sum_{i=1}^{k} \lambda_i u^{n-i+k-1}(y) = 0_E$. Pour tout $i \in [[1, k-1]], n-i+k-1 \ge n$ donc $u^{n-i+k-1}(y) = 0_E$. Il ne reste alors

que $\lambda_k u^{n-1}(y) = 0_E$ avec $\lambda_k \neq 0$ et $u^{n-1}(y) \neq 0_E$, ce qui est absurde.

La famille (e) est donc libre; étant de cardinal n elle constitue une base de \mathbb{R}^n .

b) (e) est une base donc le vecteur v(y) se décompose dans cette base : il existe un unique n-uplet $(\alpha_1, \ldots, \alpha_n)$ tel que $v(y) = \sum_{k=1}^{n} \alpha_k e_k = \sum_{k=1}^{n} \alpha_k u^{n-k}(y).$

Posons $w = \sum_{k=1}^{n} \alpha_k u^{n-k}$ et montrons que v = w en prouvant que ces deux endomorphismes coïncident sur la base (e). Pour

ce faire, on commencera par observer que u et v commutent puisque $B \in \text{Ker } \varphi_A \iff AB - BA = 0 \iff u \circ v - v \circ u = 0$, ainsi que u et w puisque w est un polynôme en u.

Soit donc
$$j \in [1, n]$$
. On a $v(e_j) = v \circ u^{n-j}(y) = u^{n-j} \circ v(y) = u^{n-j} \circ w(y) = w \circ u^{n-j}(y) = w(e_j)$ donc $v = w = \sum_{k=1}^{n} \alpha_k u^{n-k}$.

c) Nous avons prouvé que si $B \in \text{Ker } \varphi_A$ alors $v \in \mathbb{R}[u]$, soit $B \in \mathbb{R}[A]$. La réciproque a été établie à la question 12, donc $\operatorname{Ker} \varphi_{A} = \mathbb{R}[A] = \operatorname{Vect}(I_{n}, A, \dots, A^{m-1}) \text{ et } \dim(\operatorname{Ker} \varphi_{A}) = m.$

Q14.

a) Supposons B \in Ker φ_A . Alors $u \circ v = v \circ u$ et pour tout $k \in [[1, p]]$, pour tout $x \in E_u(\lambda_k)$, $u(v(x)) = v(u(x)) = v(\lambda_k x) = \lambda_k v(x)$ donc $v(x) \in E_u(\lambda_k)$: les sous-espaces propres $E_u(\lambda_k)$ sont stables par v.

page 2 Lycée Marcelin Berthelot Réciproquement, supposons les $E_u(\lambda_k)$ stables par v.

u est diagonalisable donc pour tout $x \in E$, il existe $(x_1, \dots, x_p) \in E_u(\lambda_1) \times \dots \times E_u(\lambda_p)$ tel que $x = \sum_{k=1}^p x_k$.

Alors $v \circ u(x) = v\left(\sum_{k=1}^n \lambda_k x_k\right) = \sum_{k=1}^p \lambda_k v(x_k)$ et $u \circ v(x) = \sum_{k=1}^n u(v(x_k)) = \sum_{k=1}^n \lambda_k v(x_k)$ car $v(x_k) \in \mathcal{E}_u(\lambda_k)$. Ainsi, nous avons prouvé que $u \circ v = v \circ u$, soit $\mathcal{B} \in \operatorname{Ker} \varphi_{\mathcal{A}}$.

- b) Traduit matriciellement, ceci signifie que dans une base (e) adaptée à la décomposition $E = \bigoplus_{k=1}^{p} E_u(\lambda_k)$, B appartient à $\operatorname{Ker} \varphi_A$ si et seulement si $\operatorname{Mat}_{(e)}(v) = \operatorname{diag}(B_1, \dots, B_p)$ où B_k est un bloc carré d'ordre m_k .
- c) On en déduit que dim $\operatorname{Ker}(\varphi_A) = \sum_{k=1}^p m_k^2$.
- d) Lorsque n = 7 on a $p \in [1,7]$ (entre 1 et 7 valeurs propres distinctes).
 - si p = 7 alors $m_1 = \cdots = m_7 = 1$ et dim(Ker φ_A) = 7;
 - si p = 6 alors (quitte à permuter les sous-espaces propres) $m_1 = 2$ et $m_2 = \cdots = m_6 = 1$ donc dim(Ker φ_A) = 9;
 - si p = 5 alors $(m_1, m_2, m_3, m_4, m_5) = (3, 1, 1, 1, 1)$ ou (2, 2, 1, 1, 1) donc dim $(\text{Ker } \phi_A) = 13$ ou 11;
 - si p = 4 alors $(m_1, m_2, m_3, m_4) = (4, 1, 1, 1)$ ou (3, 2, 1, 1) donc dim(Ker φ_A) = 19 ou 15;
 - si p = 3 alors $(m_1, m_2, m_3) = (5, 1, 1)$ ou (4, 2, 1) ou (3, 3, 1) ou (3, 2, 2) donc dim(Ker φ_A) = 27 ou 21 ou 19 ou 17;
 - si p = 2 alors $(m_1, m_2) = (6, 1)$ ou (5, 2) ou (4, 3) donc dim(Ker φ_A) = 37 ou 29 ou 25;
 - si p = 1 alors $m_1 = 7$ et dim(Ker ϕ_A) = 49.

Partie IV – Étude des vecteurs propres associés à une valeur propre non nulle

- **Q15.** Montrons par récurrence sur $k \in \mathbb{N}$ que $\varphi_A(B^k) = \alpha k B^k$:
 - pour k = 0, $\varphi_A(B^0) = \varphi_A(I_n) = 0$ donc la formule est bien vérifiée pour k = 0;
 - si k > 0, supposons $\varphi_A(B^{k-1}) = \alpha(k-1)B^{k-1}$. Alors

$$\phi_A(B^k) = AB^k - B^kA = (AB^{k-1} - B^{k-1}A)B + B^{k-1}(AB - BA) = \phi_A(B^{k-1})B + B^{k-1}\phi_A(B) = \alpha(k-1)B^k + \alpha B^k = \alpha kB^k$$

donc la récurrence se propage.

Q16. Soit $P \in \mathbb{R}[X]$, que l'on note $P = \sum_{k=0}^{d} a_k X^k$. Alors :

$$\varphi_{A}(P(B)) = \sum_{k=0}^{d} a_{k} \varphi_{A}(B^{k}) = \sum_{k=0}^{d} a_{k} \alpha k B^{k} = \alpha B \sum_{k=1}^{d} k a_{k} B^{k-1} = \alpha B P'(B)$$

Q17. Appliquons ce qui précède au polynôme minimal π_B . On a $\pi_B(B) = 0$ et $\phi_A(0) = 0$ donc $0 = \alpha B \pi_B'(B)$: le polynôme $X \phi_B'$ est un polynôme annulateur de B.

Mais on a $\deg X\pi_B' = \deg \pi_B$ et puisque π_B est le polynôme minimal, il existe un scalaire λ tel que $X\pi_B' = \lambda \pi_B$. La considération du coefficient dominant dans cette égalité impose $d = \lambda$, et donc $X\pi_B' - d\pi_B = 0$.

Q18. Posons $\pi_B = \sum_{k=0}^d a_k X^k$. On a $X\pi'_B = \sum_{k=0}^d k a_k X^k$ donc l'égalité $d\pi_B = X\pi'_B$ impose :

$$\forall k \in [[0,d]], \quad (d-k)a_k = 0$$

soit $a_k = 0$ pour $k \in [0, d-1]$. Sachant que π_B est unitaire, on a $a_d = 1$ et ainsi $\pi_B = X^d$, ce qui conduit à $B^d = 0$.

Lycée Marcelin Berthelot page 3