Chaîne de Markov en temps continu (Mines PC 2023)

Durée: 4 heures

Dans tout le sujet on fixe un entier naturel $N \ge 2$.

- Soit A ∈ $\mathcal{M}_{p,q}(\mathbb{R})$. Pour tout $(i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,q \rrbracket$ on note A[i,j] le coefficient à la ligne i et à la colonne j de A. Par abus, si A est une matrice colonne (q=1), on note A[i] pour A[i,1]. De même, si A est une matrice ligne (p=1), on note A[i] pour A[i,1].
- − On identifie \mathbb{R}^N avec $\mathcal{M}_{N,1}(\mathbb{R})$. Pour tout $k \in [\![1,N]\!]$, on note $E_k \in \mathcal{M}_{N,1}(\mathbb{R})$ la matrice colonne dont tous les coefficients sont nuls sauf le k^e qui vaut 1. On rappelle que (E_1,\ldots,E_N) est une base de $\mathcal{M}_{N,1}(\mathbb{R})$.
- On note U ∈ $\mathcal{M}_{N,1}(\mathbb{R})$ le vecteur colonne dont tous les coefficients sont égaux à 1. On a donc, pour tout $i \in [[1,N]]$, U[i] = 1.
- On appelle *noyau de Markov* une matrice $K \in \mathcal{M}_N(\mathbb{R})$ telle que

$$(M_1) \ \forall (i,j) \in [[1,N]]^2, \ K[i,j] \ge 0;$$

$$(\mathsf{M}_2) \ \forall i \in [\![1,N]\!], \ \sum_{j=1}^N \mathsf{K}[i,j] = 1.$$

- On appelle *probabilité* un vecteur ligne $\mu \in \mathcal{M}_{1,N}(\mathbb{R})$ tel que
 - (P₁) $\forall i \in [[1, N]], \mu[i] \ge 0$;

(P₂)
$$\sum_{j=1}^{N} \mu[j] = 1$$
.

– On notera I_N la matrice identité de $\mathcal{M}_N(\mathbb{R})$.

Préliminaires

1 ⊳ Soit $A \in \mathcal{M}_N(\mathbb{R})$. Montrer que A vérifie (M_2) si et seulement si AU = U. En déduire que si A et B sont deux noyaux de Markov, alors AB est encore un noyau de Markov.

On considère un noyau de Markov K.

- 2 ⊳ Montrer que pour tout $n \in \mathbb{N}$, K^n est un noyau de Markov.
- $3 \triangleright \text{ Soit } t \in \mathbb{R} \text{ et } (i,j) \in [[1,N]]^2$. Justifier que la série $\sum \frac{t^n K^n[i,j]}{n!}$ converge.

On notera H_t la matrice de $\mathcal{M}_N(\mathbb{R})$ définie par

$$\forall (i,j) \in [[1,N]]^2, \ H_t[i,j] = e^{-t} \sum_{n=0}^{+\infty} \frac{t^n K^n[i,j]}{n!}$$

- 4 ⊳ Montrer que pour tout réel $t \in \mathbb{R}_+$, H_t est un noyau de Markov.
- **5** ▶ Montrer que pour tout $(t,s) \in \mathbb{R}^2_+$, $H_{t+s} = H_t H_s$. On pourra faire apparaître un produit de Cauchy.

1 – Modélisation probabiliste

On cherche à modéliser un système ayant N états numérotés de 1 à N. À l'instant initial, le système est dans l'état 1. Le système est soumis à des impulsions.

On suppose que pour tout $(i,j) \in [1,N]^2$, à chaque impulsion, si le système est dans l'état i, il se retrouve dans l'état j avec une probabilité $p_{i,j}$ qui ne dépend que de l'état où il était avant l'impulsion.

Ce système est modélisé par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Pour tout entier $k \in \mathbb{N}$, on note Z_k la variable aléatoire à valeurs dans [1,N] qui correspond à l'état du système après k impulsions. Pour tout $(i,j) \in [1,N]^2$ et tout entier naturel k tels que $\mathbb{P}(Z_k=i) \neq 0$, on a donc $\mathbb{P}(Z_{k+1}=j \mid Z_k=i) = p_{i,j}$. En particulier, cette probabilité ne dépend pas de k. De plus, la variable Z_0 est la variable certaine de valeur 1.

On considère la matrice K de $\mathcal{M}_N(\mathbb{R})$ définie par

$$\forall (i, j) \in [[1, N]]^2, K[i, j] = p_{i, j}$$

Lycée Marcelin Berthelot page 1

- 6 ⊳ Justifier que K est un noyau de Markov.
- 7 ⊳ Soit $n \in \mathbb{N}$ et $j \in [1, \mathbb{N}]$. Montrer que $\mathbb{P}(\mathbb{Z}_n = j) = \mathbb{K}^n[1, j]$. On pourra raisonner par récurrence.
- 8 > Soit $t \in \mathbb{R}_+$. On suppose que le nombre d'impulsions après un temps t est donné par une variable aléatoire Y_t suivant la loi de Poisson de paramètre t. Pour tout $j \in [\![1,N]\!]$, on note $A_{t,j}$ l'événement « le système est dans l'état j après un temps t ». Justifier que $\mathbb{P}(A_{t,j}) = H_t[1,j]$.

2 - Étude d'un endomorphisme autoadjoint

Soit E un espace euclidien de dimension N. On note $\langle \cdot | \cdot \rangle$ le produit scalaire et $\| \cdot \|$ la norme euclidienne associée. Soit u un endomorphisme autoadjoint de E. On note $q_u : E \to \mathbb{R}$ la fonction définie par

$$\forall x \in E, \ q_u(x) = \langle u(x) \mid x \rangle$$

et on suppose que pour tout $x \in E$, $q_u(x) \ge 0$.

9 ⊳ Énoncer le théorème spectral pour l'endomorphisme *u*. Que peut-on dire des valeurs propres de *u* ?

On suppose que 0 est valeur propre simple de u et on note λ_2 la plus petite valeur propre non nulle de u. On note aussi $p : E \to E$ la projection orthogonale sur la droite vectorielle Ker(u).

10 ⊳ Montrer que pour tout $x \in \mathbb{E}$, $q_u(x - p(x)) \ge \lambda_2 ||x - p(x)||^2$.

3 – Convergence de $H_t[i, j]$

On considère un noyau de Markov K. On suppose que 1 est une valeur propre simple de K.

On suppose qu'il existe une probabilité $\pi \in \mathcal{M}_{1,N}(\mathbb{R})$ telle que

- (a) $\forall j \in [[1, N]], \pi[j] \neq 0$;
- (b) $\forall (i,j) \in [[1,N]]^2$, $\pi[i]K[i,j] = K[j,i]\pi[j]$; on dit que K est π -réversible.

Un rapide calcul montre alors que pour tout réel positif t, H_t est aussi un noyau de Markov π -réversible, c'est-à-dire

$$\forall (i, j) \in [[1, N]]^2, \quad \pi[i]H_t[i, j] = H_t[j, i]\pi[j]$$

On ne demande donc pas de démontrer ce résultat.

Pour finir, si X et Y sont dans $\mathcal{M}_{N,1}(\mathbb{R})$, on pose

$$\langle X \mid Y \rangle = \sum_{i=1}^{N} X[i]Y[i]\pi[i]$$

Dans cette dernière partie, on cherche à déterminer, si $(i, j) \in [[1, N]]^2$, la limite de $H_t[i, j]$ quand t tend vers $+\infty$ et à majorer la vitesse de convergence.

- 11 \triangleright Montrer que $\pi K = \pi$.
- 12 ▷ Montrer que $(X, Y) \mapsto \langle X \mid Y \rangle$ est un produit scalaire sur $\mathcal{M}_{N,1}(\mathbb{R})$.

Dans la suite on note E l'espace euclidien $\mathcal{M}_{N,1}(\mathbb{R})$ muni de ce produit scalaire.

13 ⊳ On considère l'endomorphisme u de E défini par $u(X) = (I_N - K)X$. Montrer que Ker(u) = Vect(U) et que u est un endomorphisme autoadjoint de E.

On admet que pour tout $t \in \mathbb{R}_+$, l'endomorphisme $X \mapsto H_t X$ est aussi un endomorphisme autoadjoint de E.

14 ▷ Montrer que pour tout $X \in E$,

$$q_u(X) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (X[i] - X[j])^2 K[i, j] \pi[i]$$

Que dire des valeurs propres de u?

Soit $X \in E$. On note ψ_X la fonction définie sur \mathbb{R} à valeurs dans E par $\psi_X(t) = H_t X$. On note aussi ϕ_X la fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} par $\phi_X(t) = ||H_t X||^2$.

page 2 Lycée Marcelin Berthelot

Les questions 15 et 16 pourront être admises par les 3/2.

15 ▷ Justifier que ψ_X est dérivable et que pour tout t dans \mathbb{R} ,

$$\psi_{X}'(t) = -(I_{N} - K)H_{t}X$$

16 ⊳ En déduire que $φ_X$ est dérivable et que $φ_X'(t) = -2q_u(H_tX)$.

On note $p : E \to E$ la projection orthogonale sur Ker(u).

17 ⊳ Soit $t \in \mathbb{R}_+$. Montrer que $p(H_tX) = p(X)$.

18 > On pose Y = X - p(X). On note λ la plus petite valeur propre non nulle de u. Montrer que pour tout $t \in \mathbb{R}_+$, $\phi_Y'(t) \le -2\lambda\phi_Y(t)$ et en déduire que pour tout $t \in \mathbb{R}_+$, $\|H_tX - p(X)\|^2 \le e^{-2\lambda t} \|X - p(X)\|^2$.

19 ▷ Soit $i \in [[1, N]]$ et $t \in \mathbb{R}_+$. Montrer que $||H_t E_i - \pi[i]U|| \le e^{-\lambda t} \sqrt{\pi[i]}$.

20 ⊳ Montrer que pour tout $(i, j) \in [[1, N]]^2$ et tout $t \in \mathbb{R}_+$,

$$\mathbf{H}_{t}[i,j] - \pi[j] = \sum_{k=1}^{N} \left(\mathbf{H}_{t/2}[i,k] - \pi[k] \right) \left(\mathbf{H}_{t/2}[k,j] - \pi[j] \right).$$

On pourra utiliser la question 5.

21 ⊳ En déduire que pour tout $(i, j) \in [[1, N]]^2$ et tout $t \in \mathbb{R}_+$,

$$\left| \mathbf{H}_t[i,j] - \mathbf{\pi}[j] \right| \leqslant \mathrm{e}^{-\lambda t} \sqrt{\frac{\mathbf{\pi}[j]}{\mathbf{\pi}[i]}}$$

Déterminer enfin $\lim_{t\to+\infty} H_t[i,j]$.

Lycée Marcelin Berthelot page 3