Corrigé: polynômes de Tchebychev

Partie I. Polynômes de Tchebychev de première espèce

Ouestion 1.

- a) On obtient $T_2 = 2X^2 1$, $T_3 = 4X^3 3X$, $T_4 = 8X^4 8X^2 + 1$.
- b) Notons c_n le coefficient dominant de T_n et montrons par récurrence sur $n \in \mathbb{N}^*$ que deg $T_n = n$ et $c_n = 2^{n-1}$.
 - Le résultat est vrai pour n = 1 et n = 2.
 - Si $n \ge 3$, supposons le résultat acquis aux rangs n-1 et n-2. Ainsi, $\deg(2XT_{n-1}) = n$ et $\deg T_{n-2} = n-2$ donc $\deg T_n = \deg(2XT_{n-1} T_{n-2}) = n$ et $c_n = 2c_{n-1} = 2^{n-1}$, ce qui établit le résultat au rang n: la récurrence se propage.
- c) Montrons par récurrence sur n que $T_n(-X) = (-1)^n T_n(X)$.
 - C'est vrai pour n = 0 et n = 1.
 - Si $n \ge 2$, supposons le résultat acquis aux rangs n 1 et n 2. Alors :

$$T_n(-X) = -2XT_{n-1}(-X) - T_{n-2}(-X) = -(-1)^{n-1}2XT_{n-1}(X) - (-1)^{n-2}T_{n-2}(X) = (-1)^nT_n(X)$$

ce qui établit le résultat au rang n: la récurrence se propage.

De cette égalité il résulte que T_n est un polynôme pair lorsque n est pair, et un polynôme impair lorsque n est impair.

d) La suite $a_n = T_n(1)$ vérifie les relations : $a_0 = a_1 = 1$ et $a_{n+2} = 2a_{n+1} - a_n$ et on établit sans peine par récurrence que pour tout $n \in \mathbb{N}$, $a_n = 1$.

D'après la question précédente, $T_n(-1) = (-1)^n T_n(1) = (-1)^n$. Enfin, la suite $b_n = T_n(0)$ vérifie les relations $b_0 = 1$, $b_1 = 0$ et $b_{n+2} = -b_n$ donc $b_n = \begin{cases} 0 & \text{si } n \text{ est impair} \\ (-1)^p & \text{si } n = 2p \text{ est pair} \end{cases}$.

Question 2.

- *a)* Montrons par récurrence sur n que $T_n(\cos \theta) = \cos(n\theta)$:
 - c'est vrai pour n = 0 et n = 1;
 - si $n \ge 2$, supposons le résultat acquis aux rangs n 1 et n 2. Alors

$$T_n(\cos\theta) = 2\cos\theta T_{n-1}(\cos\theta) - T_{n-2}(\cos\theta) = 2\cos\theta\cos(n-1)\theta - \cos(n-2)\theta.$$

On utilise la formule $2\cos a\cos b = \cos(a+b) + \cos(a-b)$:

$$2\cos\theta\cos(n-1)\theta = \cos(n-1)\theta + \theta + \cos((n-1)\theta - \theta) = \cos(n\theta) + \cos(n-2)\theta$$

donc $T_n(\cos \theta) = \cos(n\theta)$ et la récurrence se propage.

b) S'il existait un autre polynôme S_n vérifiant la même relation, nous aurions pour tout $\theta \in \mathbb{R}$ $T_n(\cos \theta) = S_n(\cos \theta)$ et le polynôme $T_n - S_n$ posséderait une infinité de racine; il s'agirait donc du polynôme nul. Ainsi, on peut affirmer que T_n est l'unique polynôme vérifiant la relation : $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

Question 3.

- a) On a $T_n(\cos \theta) = 0 \iff \cos(n\theta) = 0 \iff n\theta \equiv \frac{\pi}{2} \mod \pi$. Les valeurs de θ pour lesquelles $T_n(\cos \theta) = 0$ sont les $\theta_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ avec $k \in \mathbb{Z}$.
- b) Les réels $x_k = \cos \theta_k$ sont donc racines de T_n ; cependant ces valeurs ne sont pas deux à deux distinctes. Néanmoins, si on se restreint aux valeurs de $k \in [0, n-1]$, les θ_k correspondants constituent n valeurs distinctes de l'intervalle $]0, \pi[$. Puisque la fonction cos réalise une bijection de $]0, \pi[$ vers]-1, 1[, on en déduit que x_0, \ldots, x_{n-1} sont n racines d attinctes de T_n . Ainsi, le polynôme T_n est de degré n et possède n racines distinctes; il ne peut en posséder d'autres et est scindé à racines simples dans $\mathbb{R}[X]$.
- c) On peut donc écrire $T_n = 2^{n-1}(X x_0)(X x_1) \cdots (X x_{n-1})$, avec $x_k = \cos(\frac{2k+1}{2n}\pi)$.

Ainsi,
$$T_n(0) = (-1)^n 2^{n-1} \prod_{k=0}^{n-1} x_k = (-1)^n 2^{n-1} p_n$$
, et d'après la question 1.d, $p_n = \begin{cases} 0 & \text{si } n \text{ est impair } \\ \frac{(-1)^p}{2^{2p-1}} & \text{si } n = 2p \text{ est pair } \end{cases}$

Le coefficient devant X^{n-1} dans T_n vaut $-2^{n-1}\sum_{k=0}^{n-1}x_k=-2^{n-1}s_n$. Or nous savons que le polynôme T_n a même parité que n, en conséquence de quoi ce coefficient est nul. Ainsi, $s_n=0$.

Lycée Marcelin Berthelot page 1

Ouestion 4.

a) Dérivons deux fois par rapport à θ la relation $T_n(\cos \theta) = \cos(n\theta)$:

$$\forall \theta \in \mathbb{R}$$
, $-\sin \theta T'_n(\cos \theta) = -n\sin(n\theta)$ et $\sin^2 \theta T''_n(\cos \theta) - \cos \theta T'_n(\cos \theta) = -n^2\cos(n\theta)$

En posant $x = \cos \theta$ cette dernière égalité peut aussi s'écrire : $\forall x \in [-1,1]$, $(1-x^2)T_n''(x) - xT_n'(x) = -n^2T_n(x)$ donc T_n est solution sur [-1,1] de l'équation différentielle $(1-x^2)y'' - xy' + n^2y = 0$.

b) Le polynôme $(1 - X^2)T_n'' - XT_n' + n^2T_n$ s'annule sur [-1,1] donc possède une infinité de racines; il s'agit donc du polynôme nul, ce qui montre que T_n est solution de l'équation différentielle (2) sur \mathbb{R} tout entier.

Partie II. Polynômes de Tchebychev de seconde espèce

Question 5.

- a) On obtient $U_2 = 4X^2 1$, $U_3 = 8X^3 4X$ et $U_4 = 16X^4 12X^2 + 1$.
- b) Montrons par récurrence sur $n \in \mathbb{N}$ que $U_n(\cos \theta) = \frac{\sin((n+1)\theta)}{\sin \theta}$:
 - c'est vrai pour n = 0 et n = 1 car $\sin(2\theta) = 2\sin\theta\cos\theta$;
 - si $n \ge 2$, supposons le résultat acquis aux rangs n 1 et n 2. Alors

$$\sin \theta U_n(\cos \theta) = 2\cos \theta \sin(n\theta) - \sin(n-1)\theta = \sin(n+1)\theta + \sin(n-1)\theta - \sin(n-1)\theta) = \sin(n+1)\theta$$

en utilisant la relation : $2\sin a\cos b = \sin(a+b) + \sin(a-b)$. Ceci montre que la récurrence se propage.

c) Pour tout $\theta \in \mathbb{R}$, $T_{n+1}(\cos \theta) = \cos(n+1)\theta$, ce qui donne en dérivant : $-\sin \theta T'_{n+1}(\cos \theta) = -(n+1)\sin(n+1)\theta$, soit : pour tout $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$, $\frac{T'_{n+1}(\cos \theta)}{n+1} = \frac{\sin(n+1)\theta}{\sin \theta} = U_n(\cos \theta)$.

Le polynôme $\frac{1}{n+1}T'_{n+1} - U_n$ possède une infinité de racines; il s'agit donc du polynôme nul, et $U_n = \frac{1}{n+1}T'_{n+1}$.

Nous avons démontré à la question 3.b que le polynôme T_{n+1} possède n+1 racines réelles distinctes $x_0 < x_1 < \cdots < x_n$. D'après le théorème de Rolle, le polynôme T'_{n+1} possède sur chacun des intervalles $]x_k, x_{k+1}[$ (pour $0 \le k \le n-1$) au moins une racine. Ainsi, le polynôme U_n est un polynôme de degré n possédant au moins n racines distinctes; il est forcément scindé à racines simples.

d) Pour tout $\theta \in \mathbb{R}$ on a

$$\begin{aligned} \mathbf{U}_{n+1}(\cos\theta) &= \frac{\sin(n+2)\theta}{\sin\theta} = \frac{\sin(n+1)\theta\cos\theta + \sin\theta\cos(n+1)\theta}{\sin\theta} = \cos\theta \frac{\sin(n+1)\theta}{\sin\theta} + \cos(n+1)\theta \\ &= \cos\theta \mathbf{U}_n(\cos\theta) + \mathbf{T}_{n+1}(\cos\theta) \end{aligned}$$

Le polynôme $U_{n+1} - XU_n - T_{n+1}$ possède une infinité de racines ; il s'agit du polynôme nul.

Pour tout $k \in [\![1,n]\!]$ on peut donc écrire : $\mathbf{X}^{n-k}\mathbf{T}_k = \mathbf{X}^{n-k}\mathbf{U}_k - \mathbf{X}^{n-(k-1)}\mathbf{U}_{k-1}$ et par télescopage :

$$\sum_{k=1}^{n} X^{n-k} T_k = X^0 U_n - X^{n-0} U_0 = U_n - X^n \text{ soit } U_n = \sum_{k=0}^{n} X^{n-k} T_k \text{ puisque } T_0 = U_0 = 1.$$

Question 6.

- a) Le discriminant de l'expression $1 2xt + t^2$, polynomiale en t, vaut $\Delta = 4(x^2 1)$ donc :
 - si $x \in]-1,1[$ on a $\Delta < 0$: le dénominateur de f_x ne s'annule pas et $\mathcal{D}_x = \mathbb{R}$;
 - si $x = \pm 1$ on a $\Delta = 0$: le dénominateur de f_x s'annule pour t = x et $\mathcal{D}_x = \mathbb{R} \setminus \{x\}$;
 - si |x| > 1 on a $\Delta > 0$: le dénominateur de f_x s'annule en deux valeurs $x \pm \sqrt{x^2 1}$ et $\mathcal{D}_x = \mathbb{R} \setminus \{x \sqrt{x^2 1}, x + \sqrt{x^2 1}\}$.
- b) Quel que soit x, la fonction f_x est définie et de classe \mathscr{C}^{∞} au voisinage de 0 donc possède un développement limité à tout ordre donné par la formule de Taylor-Young.

page 2 Lycée Marcelin Berthelot

c) Notons $f_x(t) = \sum_{k=0}^n a_k(x)t^k + o(t^n)$ ce développement limité. Nous avons $1 = (1 - 2xt + t^2)f_x(t) = \sum_{k=0}^n a_k(x)t^n - \sum_{k=0}^n 2xa_k(x)t^{n+1} + \sum_{k=0}^n a_k(x)t^{n+2} + o(t^n).$

Ré-indexons les deux dernières sommes :

$$1 = \sum_{k=0}^{n} a_k(x)t^n - \sum_{k=1}^{n+1} 2xa_{k-1}(x)t^n + \sum_{k=2}^{n+2} a_{k-2}(x)t^n + o(t^n)$$

$$= a_0(x) + \left(a_1(x) - 2xa_0(x)\right)t + \sum_{k=2}^{n} \left(a_k(x) - 2xa_{k-1}(x) + a_{k-2}(x)\right)t^n + o(t^n)$$

Par unicité du développement limité de la fonction constante $t\mapsto 1$ on en déduit les relations :

$$a_0(x) = 1$$
, $a_1(x) = 2x$ et pour tout $k \in [2, n]$, $a_k(x) = 2xa_{k-1}(x) - a_{k-2}(x)$.

On reconnaît les relations qui définissent les polynômes U_k , donc pour tout $k \in [0, n]$, $a_k(x) = U_k(x)$.

d) Pour x = -1/2 on a donc $\frac{1}{1+t+t^2} = \mathrm{U}_0(-1/2) + \mathrm{U}_1(-1/2)t + \mathrm{U}_2(-1/2)t^2 + \mathrm{U}_3(-1/2)t^3 + \mathrm{U}_4(-1/2)t^4 + \mathrm{o}(t^4)$. La suite $(\mathrm{U}_n(-1/2))$ est définie par les relations $\mathrm{U}_0(-1/2) = 1$, $\mathrm{U}_1(-1/2) = -1$ et $\mathrm{U}_{n+2}(-1/2) = -\mathrm{U}_{n+1}(-1/2) - \mathrm{U}_n(-1/2)$. Il est dès lors facile de calculer $\mathrm{U}_2(-1/2) = 0$, $\mathrm{U}_3(-1/2) = 1$, $\mathrm{U}_4(-1/2) = -1$, et ainsi $\frac{1}{1+t+t^2} = 1-t+t^3-t^4+\mathrm{o}(t^4)$.

Question 7. Deux possibilités s'offrent à nous : partir d'une liste à deux éléments et ajouter un par un les éléments suivants (solution de gauche) ou partir d'une liste vide à n+1 éléments et la remplir peu à peu (solution de droite).

```
def developpement(x, n):
    U = [1, 2 * x]
    for k in range(2, n + 1):
        U.append(2 * x * U[k - 1] - U[k - 2])
    return U
```

```
def developpement(x, n):
    U = [None] * (n + 1)
    U[0] = 1
    U[1] = 2 * x
    for k in range(2, n + 1):
        U[k] = 2 * x * U[k - 1] - U[k - 2]
    return U
```

Partie III. Interpolation de Lagrange aux points de Tchebychev

Question 8.

- a) La fonction ϕ est de classe \mathscr{C}^{∞} sur son intervalle de définition, et pour tout x > 1, $\phi'(x) = \frac{1}{2} \left(1 \frac{1}{x^2} \right) > 0$ donc ϕ est strictement croissante. Sachant que $\lim_{x \to 1} \phi(x) = 1$ et $\lim_{x \to +\infty} \phi(x) = +\infty$, ϕ réalise bien une bijection de $]1, +\infty[$ dans lui-même.
- b) Prouvons par récurrence sur $n \in \mathbb{N}^*$ que $T_n(\phi(x)) = \frac{1}{2} \left(x^n + \frac{1}{x^n}\right)$.
 - C'est évident si n = 1, et si n = 2, $T_2(\phi(x)) = \frac{1}{2}(x + \frac{1}{x})^2 1 = \frac{1}{2}(x^2 + \frac{1}{x^2})$.
 - Si $n \ge 3$, supposons le résultat acquis aux rangs n 1 et n 2. Alors

$$T_n(\phi(x)) = 2\phi(x)T_{n-1}(\phi(x)) - T_{n-2}(\phi(x)) = \frac{1}{2}\left(x + \frac{1}{x}\right)\left(x^{n-1} + \frac{1}{x^{n-1}}\right) - \frac{1}{2}\left(x^{n-2} + \frac{1}{x^{n-2}}\right) = \frac{1}{2}\left(x^n + \frac{1}{x^n}\right)$$

et la récurrence se propage.

c) Pour tout x > 1 on a $T_n(\phi(x)) = \phi(x^n)$. Pour y > 1 appliquons cette relation à $x = \phi^{-1}(y)$; on obtient : $T_n(y) = \phi(x^n) \in [1, +\infty[$. Ainsi, pour tout y > 1 on a $T_n(y) > 1$.

Prouvons maintenant par récurrence sur *n* que pour tout x > 1, $T_n(x) \le 2^{n-1}x^n$:

- c'est clair pour n = 1 car $x \le x^n$;
- si $n \ge 2$, supposons le résultat acquis au rang n 1. Alors $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x) \le 2x(2^{n-2}x^{n-1}) 1 \le 2^{n-1}x^n$, ce qui montre que la récurrence se propage.

Lycée Marcelin Berthelot page 3

Question 9.

- a) De manière évidente, $L_k(x_i) = 0$ si $i \neq k$ et $L_k(x_k) = 1$. b) Montrons que la famille (L_k) est libre en considérant n+1 scalaires $\lambda_0, \ldots, \lambda_n$ vérifiant : $\sum_{k=0}^n \lambda_k L_k = 0$. En appliquant ce polynôme au scalaire x_i on obtient : $\forall i \in [\![0,n]\!]$, $\sum_{k=0}^n \lambda_k L_k(x_i) = 0$, soit $\lambda_i = 0$ d'après la question précédente.

La famille $(L_k)_{0\leqslant k\leqslant n}$ est libre et constitue donc une base de $\mathbb{R}_n[X]$ puisque dim $\mathbb{R}_n[X]=n+1$.

- c) Pour tout polynôme $P \in \mathbb{R}_n[X]$ il existe donc des scalaires $\lambda_0, \dots, \lambda_n$ tels que $P = \sum_{k=0}^n \lambda_k L_k$. Mais alors $P(x_i) = \lambda_i$, ce qui conduit à la décomposition : $P = \sum_{k=0}^{n} P(x_k) L_k$.
- d) D'après la formule établie à la question 2.a, $T_n(x_k) = \cos(n-k)\pi = (-1)^{n-k}$ donc $T_n = \sum_{k=0}^{n} (-1)^{n-k} L_k$.

Question 10.

a) Soit $j \in [0, n] \setminus \{k\}$. Pour tout $x \ge 1$ on a $x - x_i \ge 0$ car $x_i \le 1 \le x$.

En revanche, on a $\begin{cases} x_k - x_j > 0 & \text{si } j < k \\ x_k - x_j < 0 & \text{si } j > k \end{cases}$. Le produit $L_k(x)$ est donc constitué de k termes positifs et de n-k termes négatifs, en conséquence de quoi $(-1)^{n-k}$ I

De ceci il résulte que pour $x \ge 1$, $\left| L_k(x) \right| = (-1)^{n-k} L_k(x)$, et compte tenu de la formule établie en 9.d : $T_n(x) = \sum_{k=0}^{n} \left| L_k(x) \right|$.

b) Pour tout $k \in [0, n]$, $x_k \in [-1, 1]$ donc $|P(x_k)| \le M(P)$. D'après la formule établie en 9.c on a donc :

$$\forall x \geq 1, \quad |\mathsf{P}(x)| \leq \sum_{k=0}^n |\mathsf{P}(x_k)| \cdot |\mathsf{L}_k(x)| \leq \mathsf{M}(\mathsf{P}) \sum_{k=0}^n |\mathsf{L}_k(x)| = \mathsf{M}(\mathsf{P}) \mathsf{T}_n(x).$$

c) Pour tout $x \ge 1$ on a d'après 8.c : $1 \le T_n(x) \le 2^{n-1} x^n$ donc $M(P) \ge \frac{|P(x)|}{2^{n-1} x^n}$.

Posons maintenant, puisque P est un polynôme unitaire de degré n, $P = X^n + \sum_{k=0}^{n-1} a_k X^k$. On a $\frac{P(x)}{x^n} = 1 + \sum_{k=0}^{n-1} \frac{a_k}{x^{n-k}}$ donc $\lim_{x\to +\infty} \frac{P(x)}{x^n} = 1$, et ainsi, en faisant tendre x vers $+\infty$ dans l'inégalité précédente on obtient $M(P) \geqslant \frac{1}{2^{n-1}}$.

d) Nous avons $M(T_n) = \max_{x \in [-1,1]} |T_n(x)| = \max_{\theta \in \mathbb{R}} |T_n(\cos \theta)| = \max_{\theta \in \mathbb{R}} |\cos(n\theta)| = 1$ et nous savons que T_n est un polynôme de degré n et de coefficient dominant égal à 2^{n-1} . Le polynôme $P = \frac{1}{2^{n-1}}T_n$ est donc unitaire de degré n, et $M(P) = \frac{1}{2^{n-1}}M(T_n) = \frac{1}{2^{n-1}}$.