Transformation d'Euler (X MP 2011 – extrait)

Durée : libre

On note E le \mathbb{R} -espace vectoriel des suites réelles, et on considère l'endomorphisme Δ de E qui à toute suite $u=(u_n)_{n\in\mathbb{N}}$ associe la suite Δu de terme général $(\Delta u)_n=u_{n+1}-u_n$.

Partie I. Suites complètement monotones

Pour tout $p \in \mathbb{N}^*$ on note Δ^p le p-ième itéré de Δ défini par $\Delta^p = \Delta \circ \Delta^{p-1}$, et par convention Δ^0 est l'identité de E. On dit qu'une suite (u_n) de E est *complètement monotone* si pour tous entiers naturels p et n on a

$$(-1)^p (\Delta^p u)_n > 0.$$

Question 1. Soit $f : \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe \mathscr{C}^{∞} . On considère la suite de terme général $u_n = f(n)$.

- a) Justifier que pour tout $n \in \mathbb{N}$ il existe un réel x dans l'intervalle [n, n+1[tel que $(\Delta u)_n = f'(x)$.
- b) Montrer plus généralement que pour tout entier $p \ge 1$ et tout entier n il existe un réel x dans l'intervalle]n, n+p[tel que

$$(\Delta^p u)_n = f^{(p)}(x).$$

On pourra raisonner par récurrence sur p en considérant la fonction $g: x \mapsto f(x+1) - f(x)$ et la suite de terme général $v_n = g(n)$.

Question 2. On considère la suite de terme général $a_n = \frac{1}{n+1}$. Montrer que la suite (a_n) est complètement monotone.

Question 3. Démontrer que pour tout $p \ge 1$, pour tout $n \in \mathbb{N}$, on a :

$$(-1)^p (\Delta^p u)_n = \sum_{k=0}^p (-1)^k \binom{p}{k} u_{n+k}.$$

On pourra introduire l'endomorphisme δ de E qui à une suite $u=(u_n)$ associe la suite δu de terme général $(\delta u)_n=u_{n+1}$.

Question 4. Soit $b \in]0,1[$. On considère la suite de terme général $b_n = b^n$. Calculer $(\Delta^p b)_n$ pour tous entiers naturels n et p et en déduire que la suite (b_n) est complètement monotone.

Soit ω une fonction continue et positive sur [0,1], non identiquement nulle. Jusqu'à la fin de la première partie, on considère la suite de terme général $u_n = \int_0^1 t^n \omega(t) dt$.

Question 5.

- a) Justifier la convergence de la série de terme général $(-1)^k u_k$.
- b) Prouver ensuite que $\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{\omega(t)}{1+t} dt.$

Question 6. Montrer que la suite (u_n) est complètement monotone.

(la suite au verso)

Lycée Marcelin Berthelot page 1

Partie II. Transformée d'Euler

Dans cette partie, on considère une suite réelle (u_n) telle que la série de terme général $(-1)^n u_n$ soit convergente, et on note S sa somme. On ne suppose aucune autre propriété particulière de cette suite (u_n) . Le but de cette partie est de démontrer que :

$$S = \sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$$

On dit que la série $\sum \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$ est la *transformée d'Euler* de la série $\sum (-1)^k u_k$.

Question 7. Montrer que pour tout $p \in \mathbb{N}$ on a $\lim_{n \to +\infty} (\Delta^p u)_n = 0$.

Question 8. Montrer que pour toute suite (r_n) de limite nulle on a $\lim_{p\to +\infty} \frac{1}{2^p} \sum_{k=0}^p \binom{p}{k} r_k = 0$. On pourra s'inspirer de la preuve du théorème de Cesàro.

Question 9. Montrer que pour tout $n \in \mathbb{N}$ on a

$$u_n = \sum_{p=0}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right)$$

Question 10.

- a) Montrer que pour tous entiers naturels p et n on a $2(\Delta^p u)_n + (\Delta^{p+1} u)_n = (\Delta^p u)_n + (\Delta^p u)_{n+1}$.
- *b*) Montrer que pour tout $p \in \mathbb{N}$ on a

$$\frac{(-1)^p}{2^{p+1}}(\Delta^p u)_0 = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right)$$

Question 11.

a) Pour tout $n \in \mathbb{N}$ on pose $E_n = \sum_{p=0}^n \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$. Montrer que

$$S - E_n = \frac{1}{2^{n+1}} \sum_{p=0}^{n+1} {n+1 \choose p} \sum_{k=p}^{+\infty} (-1)^k u_k.$$

b) En déduire que la série $\sum \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$ converge et que sa somme est égale à S.

Question 12.

- a) En appliquant la question 5 à une fonction ω judicieusement choisie, montrer que $\ln 2 = \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+k}$.
- b) En déduire que $\ln 2 = \sum_{p=0}^{+\infty} \frac{1}{2^{p+1}(p+1)}$.

