Corrigé: transformation d'Euler (X MP 2011 – extrait)

Partie I. Suites complètement monotones

Ouestion 1.

- a) Pour tout $n \in \mathbb{N}$, $(\Delta u)_n = f(n+1) f(n)$; f étant de classe \mathscr{C}^1 on peut lui appliquer l'égalité des accroissements finis : il existe $x \in [n, n+1[$ tel que f(n+1) f(n) = f'(x).
- b) Raisonnons par récurrence sur $p \in \mathbb{N}^*$.
- le cas p = 1 a été traité à la question précédente.
- Si $p \ge 1$, supposons le résultat acquis au rang p 1.

Soit $n \in \mathbb{N}$. Considérons la fonction $g: x \mapsto f(x+1) - f(x)$ ainsi que la suite (v_n) de terme général $v_n = g(n)$. g est de classe \mathscr{C}^{∞} donc on peut lui appliquer l'hypothèse de récurrence : il existe $y \in]n, n+p-1[$ tel que $(\Delta^{p-1}v)_n = g^{(p-1)}(y)$.

Mais d'une part $v = \Delta u$ donc $\Delta^{p-1}v = \Delta^p u$ et d'autre part $g^{(p-1)}(y) = f^{(p-1)}(y+1) - f^{(p-1)}(y)$ donc d'après l'égalité des accroissements finis il existe $x \in]y, y+1[$ tel que $g^{(p-1)}(y) = f^{(p)}(x)$.

On a n < y < n + p - 1 et y < x < y + 1 donc n < x < n + p; le résultat est bien acquis au rang p, la récurrence se propage.

Question 2. Considérons la fonction $f: x \mapsto \frac{1}{x+1}$. Cette fonction des de classe \mathscr{C}^{∞} et il est aisé de prouver par récurrence sur $p \in \mathbb{N}^*$ que pour tout x > 0, $f^{(p)}(x) = \frac{(-1)^p p!}{(x+1)^{p+1}}$.

D'après la question précédente, pour tout p et n dans \mathbb{N} il existe $x \in]n, n+p[$ tel que $(\Delta^p a)_n = f^{(p)}(x) = \frac{(-1)^p p!}{(x+1)^{p+1}}$ donc $(-1)^p (\Delta^p u)_n = \frac{p!}{(x+1)^{p+1}} > 0$, ce qui prouve que la suite (a_n) est complètement monotone.

Question 3. Considérons l'endomorphisme δ de E qui à toute suite (u_n) de E associe la suite de terme général $(\delta u)_n = u_{n+1}$. On a $\Delta = \delta - \mathrm{Id}_E$ donc d'après la formule du binôme, $\Delta^p = \sum_{k=0}^p \binom{p}{k} (-1)^{p-k} \delta^k$. Or à l'évidence $(\delta^k u)_n = u_{n+k}$ donc $\frac{p}{k}(n)$

$$(\Delta^p u)_n = \sum_{k=0}^p \binom{p}{k} (-1)^{p-k} u_{n+k} \text{ et ainsi, } (-1)^p (\Delta^p u)_n = \sum_{k=0}^p (-1)^k \binom{p}{k} u_{n+k}.$$

Question 4. D'après la question précédente, $(-1)^p (\Delta^p b)_n = \sum_{k=0}^p \binom{p}{k} (-1)^k b^{n+k} = b^n (1-b)^p$. Il en résulte que si $b \in]0,1[$ la suite (b^n) est complètement monotone.

Question 5.

a) Puisque ω est à valeurs positives, on a pour tout $n \in \mathbb{N}$ et $t \in [0,1]$, $t^{n+1}\omega(t) \leq t^n\omega(t)$ ce qui donne en intégrant : $u_{n+1} \leq u_n$. La suite (u_n) est décroissante.

De plus, ω est continue sur le segment [0,1] donc bornée : en notant M sa borne supérieure on a $0 \le u_n \le M \int_0^1 t^n dt = \frac{M}{n+1}$ donc $\lim u_n = 0$.

On peut donc appliquer le critère spécial relatif aux séries alternée pour conclure : la série $\sum (-1)^n u_n$ converge.

b) On calcule
$$\sum_{k=0}^{n} (-1)^k u_k = \int_0^1 \omega(t) \sum_{k=0}^{n} (-t)^k dt = \int_0^1 \frac{\omega(t)}{1+t} dt + (-1)^n \int_0^1 \frac{\omega(t)t^{n+1}}{1+t} dt.$$

Or
$$0 \le \int_0^1 \frac{\omega(t)t^{n+1}}{1+t} dt \le M \int_0^1 t^{n+1} dt = \frac{M}{n+2}$$
 et en passant à la limite : $\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{\omega(t)}{1+t} dt$.

Question 6. D'après la formule établie à la question 3 on a

$$(-1)^{p}(\Delta^{p}u)_{n} = \sum_{k=0}^{p} (-1)^{k} \binom{p}{k} u_{n+k} = \int_{0}^{1} t^{n} \omega(t) \sum_{k=0}^{p} \binom{p}{k} (-1)^{k} t^{k} dt = \int_{0}^{1} t^{n} (1-t)^{p} \omega(t) dt \ge 0$$

De plus, si on avait $(-1)^p (\Delta^p u)_n = 0$ ceci signifierait que pour tout $t \in]0,1[$, $\omega(t) = 0$, ce qui n'est pas possible car ω est supposée non identiquement nulle. On peut conclure : la suite (u_n) est complètement monotone.

Lycée Marcelin Berthelot page 1

Partie II. Transformée d'Euler

Question 7. D'après la formule établie à la question 3, $(\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k}$. Lorsque l'entier p est fixé, il s'agit d'une combinaison linéaire *finie* de suites qui toutes tendent vers 0 (en effet, $\sum_{n \to +\infty} (-1)^n u_n$ converge donc $\lim_{n \to +\infty} (\Delta^p u)_n = 0$.

Question 8. Considérons un réel $\epsilon > 0$; par hypothèse il existe un rang N à partir duquel $|r_k| \le \epsilon$. Ainsi, pour tout $p \ge N$,

$$\left| \frac{1}{2^p} \sum_{k=0}^p \binom{p}{k} r_k \right| \leq \frac{1}{2^p} \sum_{k=0}^{N-1} \binom{p}{k} |r_k| + \frac{\epsilon}{2^p} \sum_{k=N}^p \binom{p}{k} \leq \sum_{k=0}^{N-1} \frac{1}{2^p} \binom{p}{k} |r_k| + \frac{\epsilon}{2^p} \sum_{k=0}^p \binom{p}{k} = \sum_{k=0}^{N-1} \frac{1}{2^p} \binom{p}{k} |r_k| + \epsilon$$

Pour $k \in [0, N-1]$ fixé, considérons la suite $\alpha_p = \frac{1}{2^p} \binom{p}{k}$. On calcule $\frac{\alpha_{p+1}}{\alpha_p} = \frac{p+1}{2(p+1-k)}$ donc $\lim_{p \to +\infty} \frac{\alpha_{p+1}}{\alpha_p} = \frac{1}{2} < 1$ et d'après le critère de d'Alembert, $\lim \alpha_p = 0$.

Ceci montre que $\lim_{p\to +\infty}\sum_{k=0}^{N-1}\frac{1}{2^p}\binom{p}{k}|r_k|=0$. Il existe donc un rang $N'\geqslant N$ à partir duquel $\left|\frac{1}{2^p}\sum_{k=0}^p\binom{p}{k}r_k\right|\leqslant 2\epsilon$, ce qui prouve que $\lim_{p\to +\infty}\frac{1}{2^p}\sum_{k=0}^p\binom{p}{k}r_k=0$.

Question 9. Soit $p \in \mathbb{N}$. Par télescopage, $\sum_{k=0}^{p-1} \left(\frac{(-1)^k}{2^k} (\Delta^k u)_n - \frac{(-1)^{k+1}}{2^{k+1}} (\Delta^{k+1} u)_n \right) = (\Delta^0 u)_n - \frac{(-1)^p}{2^p} (\Delta^p u)_n = u_n - \frac{(-1)^p}{2^p} (\Delta^p u)_n$. Il s'agit donc de montrer que $\lim_{p \to +\infty} \frac{(-1)^p}{2^p} (\Delta^p u)_n = 0$. Or d'après la question 3, $\frac{(-1)^p}{2^p} (\Delta^p u)_n = \frac{1}{2^p} \sum_{k=0}^p (-1)^k \binom{p}{k} u_{n+k}$ et puisque la série $\sum_{k=0}^{p} (-1)^n u_k$ converge la suite (u_n) tend vers 0. Ainsi, à n fixé, $\lim_{k \to +\infty} (-1)^k u_{n+k} = 0$. On peut donc appliquer la question 8 et conclure : $\lim_{p \to +\infty} \frac{(-1)^p}{2^p} (\Delta^p u)_n = 0$.

Question 10.

- a) On a $\Delta^{p+1}u = \Delta(\Delta^p u)$ donc $(\Delta^{p+1}u)_n = (\Delta^p u)_{n+1} (\Delta^p u)_n$. Ainsi, $2(\Delta^p u)_n + (\Delta^{p+1}u)_n = (\Delta^p u)_n + (\Delta^p u)_{n+1}$.
- b) Soit $N \in \mathbb{N}$. On a :

$$\sum_{n=0}^{N} (-1)^{n} \left(\frac{(-1)^{p}}{2^{p}} (\Delta^{p} u)_{n} - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_{n} \right) = \frac{(-1)^{p}}{2^{p+1}} \sum_{n=0}^{N} (-1)^{n} \left(2(\Delta^{p} u)_{n} + (\Delta^{p+1} u)_{n} \right) = \frac{(-1)^{p}}{2^{p+1}} \sum_{n=0}^{N} (-1)^{n} \left((\Delta^{p} u)_{n} + (\Delta^{p} u)_{n+1} \right).$$

 $\text{Par t\'elescopage, } \sum_{n=0}^{N} (-1)^n \Big((\Delta^p u)_n + (\Delta^p u)_{n+1} \Big) = \sum_{n=0}^{N} \Big((-1)^n (\Delta^p u)_n - (-1)^{n+1} (\Delta^p u)_{n+1} \Big) = (\Delta^p u)_0 - (-1)^{N+1} (\Delta^p u)_{N+1}.$

Or d'après la question 7, $\lim_{N\to+\infty} (\Delta^p u)_{N+1} = 0$ donc en faisant tendre N vers $+\infty$ on obtient bien :

$$\sum_{n=0}^{+\infty} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right) = \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$$

Question 11.

a) Sachant qu'une somme finie de séries convergentes est convergente, la question précédente permet d'écrire :

$$E_n = \sum_{k=0}^{+\infty} (-1)^k \sum_{p=0}^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_k - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_k \right)$$

La question 9 nous permet en outre d'écrire : $S = \sum_{k=0}^{+\infty} (-1)^k \sum_{p=0}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_k - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_k \right)$.

Ainsi,
$$S - E_n = \sum_{k=0}^{+\infty} (-1)^k \sum_{p=n+1}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_k - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_k \right).$$

Nous avons déjà montré à la question 9 que $\lim_{p\to +\infty} \frac{(-1)^p}{2^p} (\Delta^p u)_k = 0$ donc par télescopage

$$\sum_{p=n+1}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_k - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_k \right) = \frac{(-1)^{n+1}}{2^{n+1}} (\Delta^{n+1} u)_k - 0$$

et $S - E_n = \sum_{k=0}^{+\infty} \frac{(-1)^{k+n+1}}{2^{n+1}} (\Delta^{n+1} u)_k$. En appliquant la formule de la question 3, il vient enfin :

$$S - E_n = \frac{1}{2^{n+1}} \sum_{k=0}^{+\infty} (-1)^k \sum_{p=0}^{n+1} \binom{n+1}{p} (-1)^p u_{k+p} = \frac{1}{2^{n+1}} \sum_{p=0}^{n+1} \binom{n+1}{p} \sum_{k=0}^{+\infty} (-1)^{k+p} u_{k+p} = \frac{1}{2^{n+1}} \sum_{p=0}^{n+1} \binom{n+1}{p} \sum_{k=p}^{+\infty} (-1)^k u_k$$

b) Il s'agit maintenant de faire tendre n vers $+\infty$. Pour se faire, on pose $r_p = \sum_{k=p}^{+\infty} (-1)^k u_k$. S'agissant du reste d'une série convergente on a $\lim_{p \to +\infty} r_p = 0$ donc on peut appliquer la question 8 et conclure : $\lim_{n \to +\infty} S - E_n = 0$, ce qui prouve que la suite (E_n) converge et donc que $S = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$.

Question 12.

- a) Appliquons la question 5 à la fonction $\omega: t \mapsto 1$. On a $u_n = \int_0^1 t^n dt = \frac{1}{n+1}$ et $\int_0^1 \frac{dt}{1+t} = \ln 2$ donc $\ln 2 = \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+k}$.
- b) Appliquons maintenant le résultat établi dans cette partie : $\sum_{k=0}^{+\infty} \frac{(-1)^k}{1+k} = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$

Il reste à appliquer la formule de la question 3 :

$$(-1)^{p} (\Delta^{p} u)_{0} = \sum_{k=0}^{p} {p \choose k} (-1)^{k} u_{k} = \sum_{k=0}^{p} {p \choose k} \frac{(-1)^{k}}{k+1} = \frac{1}{p+1} \sum_{k=0}^{p} (-1)^{k} {p+1 \choose k+1}$$
$$= \frac{1}{p+1} \left(1 - \sum_{k=0}^{p+1} (-1)^{k} {p+1 \choose k} \right) = \frac{1}{p+1} \left(1 - (1-1)^{p+1} \right) = \frac{1}{p+1}$$

et ainsi,
$$\ln 2 = \sum_{p=0}^{+\infty} \frac{1}{2^{p+1}(p+1)}$$
.