Corrigé : Corrigé : autour des matrices de Toeplitz (Centrale PSI 2018)

Généralités et exemples

I.A - Généralités

Q 1. Pour tout $k \in [-n+1, n-1]$ posons $E_k = T(0, ..., 0, 1, 0, ..., 0)$ (le 1 est placé en position k + n). Alors $Toep_n(\mathbb{C}) = \mathbb{C}$ $\operatorname{Vect}(\operatorname{E}_{-n+1},\ldots,\operatorname{E}_{n-1})$ donc c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$, et cette famille étant à l'évidence libre, dim $\operatorname{Toep}_n(\mathbb{C})$ =

Q 2. Posons
$$P = \sum_{i=0}^{p} a_i X^i$$
 et $Q = \sum_{j=0}^{q} b_j X - j$. Pour tout $(i, j) \in [[0, p]] \times [[0, q]]$, A^i et B^j commutent donc:

$$P(A)Q(B) = \sum_{i=0}^{p} \sum_{j=0}^{q} a_i b_j A^i B^j = \sum_{j=0}^{q} \sum_{i=0}^{p} a_i b_j B^j A^i = Q(B)P(A)$$

I.B - Cas de la dimension 2

Q 3.
$$\chi_A(X) = (X - a)^2 - bc$$
.

Si $bc \neq 0$, le polynôme caractéristique de A possède deux racines distinctes donc est scindé à racines simples; dans ce cas A est diagonalisable.

Si bc = 0, a est valeur propre d'ordre 2 donc A n'est diagonalisable que si elle est semblable à aI_2 , autrement dit égale, soit si et seulement si b = c = 0.

Réduction d'une matrice sous forme de Toeplitz

Si $\chi_{\rm M}$ possède deux racines distinctes $\alpha \neq \beta$, la matrice M est diagonalisable donc semblable à la matrice $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$.

Si $\chi_{\rm M}$ possède une racine double α alors M est trigonalisable donc semblable à une matrice de la forme $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$.

Q 6. La seconde de ces deux matrices est déjà une matrice de Toeplitz, donc il suffit de montrer que la matrice $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ est semblable à une matrice de Toeplitz pour conclure par transitivité de la relation de similitude.

On a
$$(X - \alpha)(X - \beta) = \left(X - \frac{\alpha + \beta}{2}\right)^2 - \frac{(\alpha - \beta)^2}{4}$$
 donc d'après la partie I.B, cette matrice est semblable à $T\left(\frac{\alpha - \beta}{2}, \frac{\alpha + \beta}{2}, \frac{\alpha - \beta}{2}\right)$.

I. C - Un autre cas particulier: les matrices diagonales

Q 7. $(A_n(a,b,c) - \lambda)X = 0$ si et seulement si : $(a - \lambda)x_1 + bx_2 = 0$, $cx_k + (a - \lambda)x_{k+1} + bx_{k+2} = 0$ pour $k \in cro1, n-2$ et $cx_{n-1} + (a-\lambda)x_n = 0$ soit, en posant $x_0 = x_{n+1} = 0$: $\forall k \in [[0, n-1]], bx_{k+2} + (a-\lambda)x_{k+1} + cx_k = 0$.

Q 8. Si l'équation (I.1) possède deux racines distinctes r_1 et r_2 , il existe deux nombre complexes α et β tels que pour tout $k \in [0, n-1]$, $x_k = \alpha r_1^k + \beta r_2^k$. Si l'équation (I.1) possède une racine double r, il existe deux nombre complexes α et β tels que pour tout $k \in [0, n-1]$, $x_k = \alpha r^k + \beta k r^k$.

Supposons que (I.1) possède une racine double r. Les conditions $x_0 = x_{n+1} = 0$ imposent $\alpha = 0$ et $(\alpha + (n+1)\beta)r^{n+1} = 0$ soit $\beta = 0$ puisque 0 n'est pas racine de (I.1) (car $c \neq 0$). Mais ceci conduit à X = 0, ce qui ne se peut s'agissant d'un vecteur propre. On en déduit que (I.1) possède deux racines distinctes r_1 et r_2 .

 r_1 et r_2 sont non nuls car $c \neq 0$, et les conditions $x_0 = x_{n+1} = 0$ imposent ici $\alpha + \beta = 0$ et $\alpha r_1^{n+1} + \beta r_2^{n+1} = 0$ donc $\beta = -\alpha$ et $r_1^{n+1} - r_2^{n+1} = 0$, soit $r_1/r_2 \in \mathbb{U}_{n+1}$ puisqu'on ne peut avoir $\alpha = \beta = 0$ sans avoir X = 0..

Q 11. Les relations entre coefficients et racines donnent $r_1r_2 = c/b$ et $r_1 + r_2 = (\lambda - a)/b$.

On a $r_1/r_2 \in \mathbb{U}_{n+1} \setminus \{1\}$ donc il existe $\ell \in [\![1,n]\!]$ tel que $r_1/r_2 = e^{2i\ell\pi/(n+1)}$. En écrivant $r_1^2 = r_1r_2 \times r_1/r_2$ on obtient $r_1^2 = \frac{c}{h}e^{2i\ell\pi/(n+1)}$ donc il existe $\rho \in \mathbb{C}$ tel que $\rho^2 = bc$ et $r_1 = \frac{\rho}{h}e^{i\ell\pi/(n+1)}$.

On en déduit $r_2 = \frac{\rho}{h} e^{-i\ell\pi/(n+1)}$ puis $\lambda = a + b(r_1 + r_2) = a + 2\rho \cos\left(\frac{\ell\pi}{n+1}\right)$.

Q 12. Pour tout
$$k \in [0, n+1]$$
 on a donc $x_k = \alpha(r_1^k - r_2^k) = \alpha \frac{\rho^k}{b^k} (e^{ik\ell\pi/(n+1)} - e^{-ik\ell\pi/(n+1)}) = 2i\alpha \frac{\rho^k}{b^k} \sin(\frac{k\ell\pi}{n+1})$.

page 1 Lycée Marcelin Berthelot

Q 13. Les questions 11 et 12 ont mis en évidence n valeurs propres distinctes associées à autant de sous-espaces propres de dimension 1 donc $A_n(a,b,c)$ est diagonalisable, et ses valeurs propres sont les $a + 2\rho\cos\left(\frac{\ell\pi}{n+1}\right)$ pour $\ell \in [\![1,n]\!]$ et $\rho^2 = bc$.

II Matrices circulantes

Q 14. Notons (e) la base canonique de \mathbb{C}^n et $u \in \mathcal{L}(\mathbb{C}^n)$ l'endomorphisme défini par $\mathrm{Mat}_{(e)}(u) = \mathrm{M}_n$. On a $u(e_1) = e_n$ et $u(e_i) = e_{i-1}$ pour $i \in [\![2,n]\!]$ donc pour tout $k \in [\![1,n]\!]$, $u^k(e_i) = e_{i-k}$ pour $i \in [\![k+1,n]\!]$ et $u^k(e_i) = e_{n+i-k}$ si $i \in [\![1,k]\!]$. La matrice $\mathrm{M}_n^k = \mathrm{Mat}_{(e)}(u^k)$ est donc constituée de deux diagonales de 1 débutant aux positions (n+1-k,1) et (1,k+1), les autres coefficients étant nuls.

En particulier, $M_n^n = I_n$ donc M_n est inversible et $M_n^{-1} = M^{n-1}$. Enfin, le polynôme $X^n - 1$ annule M_n .

- **Q 15.** Si λ est valeur propre de M_n alors λ est racine de X^n-1 donc il existe $q \in [\![1,n]\!]$ tel que $\lambda = \omega_n^{q-1}$. On résout $M_nX = \omega_n^{q-1}X$ pour obtenir un sous-espace propre de dimension 1, engendré par le vecteur X défini par $x_p = \omega_n^{(p-1)(q-1)}$, $1 \le p \le n$. On dispose ainsi de n sous-espaces propres de dimension 1, la matrice M_n est diagonalisable.
- **Q 16.** La matrice Φ_n apparaît comme la matrice de passage de la base canonique vers la base des vecteurs propres de M_n donc est inversible, et $\Phi_n^{-1}M_n\Phi_n = \text{diag}(1, \omega_n, \dots, \omega_n^{n-1})$.
- **Q 17.** On a immédiatement $A = \sum_{k=0}^{n-1} t_k M_n^k$.
- **Q 18.** Considérons la division euclidienne de P par $X^n 1$: $P(X) = (X^n 1)Q(X) + R(X)$ avec deg $R \le n 1$. Puisque $X^n 1$ annule M_n , $P(M_n) = R(M_n)$, et d'après la question précédente, $R(M_n)$ est une matrice circulante.
- **Q 19.** Notons C_n l'ensemble des matrices circulantes de taille n. On a déjà $C_n \subset \text{Toep}_n(\mathbb{C})$, et on vient de montrer que $C_n = \{P(M_n) \mid P \in \mathbb{C}[X]\}$. Sous cette forme, il devient évident que $A, B \in C_n \implies \lambda A + B \in C_n$ et $AB \in C_n$, donc C_n est un sous-espace vectoriel de $\text{Toep}_n(\mathbb{C})$, stable par produit. Enfin, de l'égalité $P(M_n)^T = P(M_n^T)$ on tire que C_n est stable par transposition.
- **Q 20.** De l'égalité de diagonalisation $M_n = \Phi_n D_n \Phi_n^{-1}$ avec diag $(1, \omega_n, \dots, \omega_n^{n-1})$ on tire que $P(M_n) = \Phi_n P(D_n) \Phi_n^{-1}$. Or $P(D_n) = \text{diag}(P(1), P(\omega_n), \dots, P(\omega_n^{n-1}))$ donc $P(M_n)$ est diagonalisable avec les mêmes vecteurs propres que M_n , et ses valeurs propres sont $P(1), P(\omega_n), \dots, P(\omega_n^{n-1})$.

III Matrices cycliques

III. A – Endomorphismes et matrices cycliques

Q 21. Supposons (i) vérifié. $f_{\mathbf{M}}^{n}(x_{0}) \in \mathbb{C}^{n}$ donc il existe $(a_{0}, \dots, a_{n-1}) \in \mathbb{C}^{n}$ tel que $f_{\mathbf{M}}^{n}(x_{0}) = \sum_{k=0}^{n-1} a_{k} f_{\mathbf{M}}^{k}(x_{0})$. Avec ces notations,

la matrice associée à $f_{\mathbf{M}}$ dans cette base est la matrice $\mathbf{C}(a_0,\ldots,a_{n-1})$, qui est donc semblable à la matrice \mathbf{M} . Supposons (ii) vérifiée. $\mathbf{C}(a_0,\ldots,a_{n-1})$ est donc la matrice associée à $f_{\mathbf{M}}$ dans une certaine base (e_1,\ldots,e_n) . En posant $x_0=e_1$ on obtient par lecture de la matrice que pour tout $k\in [\![1,n]\!]$, $e_k=f_{\mathbf{M}}(e_{k-1})$ donc par récurrence $e_k=f_{\mathbf{M}}^{k-1}(e_1)=f_{\mathbf{M}}^{k-1}(x_0)$.

Q 22. On a $f_{\mathbf{M}}(u) = \sum_{i=1}^{n} \lambda_{i} u_{i} e_{i}$ et plus généralement $f_{\mathbf{M}}^{k}(u) = \sum_{i=1}^{n} \lambda_{i}^{k} u_{i} e_{i}$. La matrice associée à la famille de vecteurs $\left(u, f_{\mathbf{M}}(u), \dots, f_{\mathbf{M}}^{n-1}(u)\right)$ dans la base (e) s'écrit donc :

$$\mathbf{P} = \begin{pmatrix} u_1 & \lambda_1 u_1 & \cdots & \lambda_1^{n-1} u_1 \\ u_2 & \lambda_2 u_2 & \cdots & \lambda_2^{n-1} u_2 \\ \vdots & \vdots & \ddots & \vdots \\ u_n & \lambda_n u_n & \cdots & \lambda_n^{n-1} u_n \end{pmatrix}$$

et cette famille est une base si et seulement si det $P \neq 0$. Or det $P = u_1 u_2 \cdots u_n V(\lambda_1, \dots, \lambda_n)$ où $V(\lambda_1, \dots, \lambda_n)$ est un déterminant de Vandermonde, donc cette famille est une base si et seulement si u_1, \dots, u_n sont non nuls et les λ_i deux-à-deux distincts.

Q 23. Les deux questions précédentes montrent que si f_M est diagonalisable, une condition nécessaire et suffisante pour que f_M soit cyclique est que f_M possède n valeurs propres $deux-\hat{a}$ -deux distinctes, et que dans ce cas les vecteurs cycliques

s'écrivent $x_0 = \sum_{i=1}^n u_i e_i$ où les u_1, \dots, u_n sont tous non nuls.

Q 24. Posons
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et résolvons le système $\begin{cases} C(a_0, \dots, a_{n-1})X = \lambda X \\ X \neq 0 \end{cases}$.

$$C(a_{0},...,a_{n-1})X = \lambda X \iff \begin{cases} a_{0}x_{n} = \lambda x_{1} \\ x_{1} + a_{1}x_{n} = \lambda x_{2} \\ \cdots = \cdots \\ x_{n-2} + a_{n-2}x_{n} = \lambda x_{n-1} \\ x_{n-1} + a_{n-1}x_{n} = \lambda x_{n} \end{cases} \iff \begin{cases} x_{n-1} = (\lambda - a_{n-1})x_{n} \\ x_{n-2} = (\lambda^{2} - a_{n-1}\lambda - a_{n-2})x_{n} \\ \cdots = \cdots \\ x_{1} = (\lambda^{n-1} - a_{n-1}\lambda^{n-2} - \cdots - a_{2}\lambda - a_{1})x_{n} \\ 0 = (\lambda^{n} - a_{n-1}\lambda^{n-1} - \cdots - a_{1}\lambda - a_{0})x_{n} \end{cases}$$

Une condition nécessaire et suffisante pour que ce système possède une solution non nulle X est donc que $\lambda^n - a_{n-1}\lambda^{n-1}$ – $\cdots - a_1 \lambda - a_0 = 0.$

Q 25. Si cette condition est vérifiée, le sous-espace propre associé est de dimension 1, engendré par le vecteur X défini par $x_n = 1$ et $x_k = \lambda^{n-k} - a_{n-1}\lambda^{n-k-1} - \dots - a_{k+1}\lambda - a_k$ pour $k \in [[1, n-1]]$.

Chacun des sous-espaces propres étant de dimension 1, la matrice $C(a_0, ..., a_{n-1})$ est diagonalisable si et seulement si elle possède n valeurs propres distinctes, autrement dit si et seulement si le polynôme $X^n - \sum_{k=1}^{n-1} a_k X^k$ n'a que des racines simples dans $\mathbb C$ simples dans C.

Commutant d'un endomorphisme cyclique

Q 27. Soit
$$P = \sum_{k=0}^{d} a_k X^k$$
. Alors $f_M \circ P(f_M) = f_m \circ \left(\sum_{k=0}^{d} a_k f_M^k\right) = \sum_{k=0}^{d} a_k f_M^{k+1} = \left(\sum_{k=0}^{d} a_k f_M^k\right) \circ f_M = P(f_M) \circ f_M \text{ donc } P(f_M) \in \mathcal{C}(f_M)$.

Q 28. Soit
$$x_0 \in \mathbb{C}^n$$
 tel que $\left(x_0, f_{\mathbf{M}}(x_0), \dots, f_{\mathbf{M}}^{n-1}(x_0)\right)$ soit une base de \mathbb{C}^n . Posons $g(x_0) = \sum_{k=0}^{n-1} \alpha_k f_{\mathbf{M}}^k(x_0)$. Pour tout $i \in \mathbb{C}^n$

 $\llbracket [1, n-1] \rrbracket$, on a, puisque g et $f_{\mathbf{M}}$ commutent, $g(f_{\mathbf{M}}^{i}(x_{0})) = f_{\mathbf{M}}^{i}(g(x_{0})) = \sum_{k=0}^{n-1} \alpha_{k} f_{\mathbf{M}}^{k+i}(x_{0}) = \left(\sum_{k=0}^{n-1} f_{\mathbf{M}}^{k}\right) \left(f_{\mathbf{M}}^{i}(x_{0})\right)$. Ceci montre que les endomorphismes g et $\sum_{k=0}^{n-1} f_{\mathbf{M}}^{k}$ coïncident sur la base $\left(x_{0}, f_{\mathbf{M}}(x_{0}), \dots, f_{\mathbf{M}}^{n-1}(x_{0})\right)$; ils sont donc égaux.

Les deux questions précédentes prouvent par double inclusion que $\mathcal{C}(f_{\mathbf{M}}) = \{ P(f_{\mathbf{M}}) \mid P \in \mathbb{C}[X] \}$.

La matrice N est cyclique avec N = C(0,...,0) donc d'après Q24 ses valeurs propres sont les racines du polynôme Xⁿ : 0 est donc la seule valeur propre. D'après Q25, le sous-espace propre associé est de dimension 1, engendré par le vecteur (0, ..., 0, 1) de \mathbb{C}^n . Elle n'est pas diagonalisable.

Oui, comme dit à la question précédente. Q 31.

Q 32. D'après Q29, les matrices qui commutent avec N s'écrivent $\sum_{k=0}^{n-1} a_k N^k = T(a_{n-1}, a_{n-2}, \dots, a_1, a_0, 0, \dots, 0)$; ce sont bien les matrices de Toeplitz triangulaires inférieures.

Quelques résultats de calcul matriciel dans $\mathcal{M}_n(\mathbb{R})$

Q 33. Le coefficient de rang (k,l) de AB vaut : $(AB)_{kl} = \sum_{m=1}^{n} A_{km} B_{ml}$. On sait que $A_{km} = 0$ si $m - k \neq i$ et $B_{ml} = 0$ si $l - m \neq j$ donc pour que le produit $A_{km} B_{ml}$ soit non nul il faut que m - k = i et l - m = j, ce qui impose l - k = i + j. Ainsi, si $l - k \neq i + j$ tous les termes de la somme sont puls et $(AB)_{kl} = 0$. Cesi provue que AB = 0. tous les termes de la somme sont nuls, et $(AB)_{kl} = 0$. Ceci prouve que $AB \in \Delta_{i+j}$.

Q 34. Si
$$A \in H_i$$
, il existe $(A_i, ..., A_{n-1}) \in \Delta_i \times \cdots \times \Delta_{n-1}$ tel que $A = \sum_{k=i}^{n-1} A_k$.
Si $B \in H_j$, il existe $(B_j, ..., B_{n-1}) \in \Delta_j \times \cdots \times \Delta_{n-1}$ tel que $B = \sum_{l=j}^{n-1} B_l$.
Ainsi, $AB = \sum_{k=i}^{n-1} \sum_{l=j}^{n-1} A_k B_l$ avec, d'après la question précédente, $A_k B_l \in \Delta_{k+l}$. Or $k+l \ge i+j$ et $\Delta_{k+l} = 0$ si $k+l \ge n$ donc

$$AB \in \bigoplus_{k \geqslant i+j} \Delta_k = H_{i+j}.$$

page 3 Lycée Marcelin Berthelot

- **Q 35.** On calcule $(I_n + C) \sum_{k=0}^{n-1} (-1)^k C^k = \sum_{k=0}^{n-1} (-1)^k C^k + \sum_{k=0}^{n-1} (-1)^k C^{k+1} = \sum_{k=0}^{n-1} (-1)^k C^k \sum_{k=1}^{n} (-1)^k C^k = I_n C^n = I_n \text{ donc } I_n + C$ est inversible, d'inverse $\sum_{k=0}^{n-1} (-1)^k C^k$.
- D'après Q33 on a $C^p \in \Delta_{p(k+1)}$ donc pour $p(k+1) \ge n$, $C^p = 0$. La matrice C est nilpotente donc d'après Q35, P est inversible, d'inverse $P^{-1} = \sum_{p=0}^{n-1} (-1)^p C^p \in \bigoplus_{p=0}^{n-1} \Delta_{p(k+1)}$.

 Q 37. D'après Q36, $P^{-1} = I_n + Q$ avec $Q = \sum_{p=1}^{n-1} (-1)^p C^p \in \bigoplus_{p=1}^{n-1} \Delta_{p(k+1)} \subset H_{k+1}$. Ainsi, $\phi(M) = (I_n + Q)M(I_n + C) = M + M'$ avec M' = QM + MC + QMC.

On a $Q \in H_{k+1}$, $M \in \Delta_i$ et $MC \in \Delta_{k+i+1}$ (d'après Q33) donc d'après Q34, $QM \in H_{k+1+i}$, $MC \in H_{k+1+i}$ et $QMC \in H_{2k+2+i}$ donc $M' \in H_{k+1+i} \subset H_{k+1}$.

- **Q 38.** On a ici $\varphi(N) = N + QN + NC + QNC = N + NC CN + N'$ avec N' = (Q + C)N + QNC. Compte tenu de l'expression de Q, on a $Q + C \in H_{2(k+1)}$ et $N \in \Delta_{-1}$ donc $(Q + C)N \in H_{2k+1}$ et $QNC \in H_{2k+1}$ donc $N' \in H_{2k+1} \subset H_{k+1}$.
- On a $N \in \Delta_{-1}$ et $T \in H_0$ donc $A \in H_{-1}$. Puisque $P \in H_0$, on en déduit avec Q34 que $B \in H_{-1}$.

Écrivons maintenant
$$T = \sum_{i=0}^{n-1} T^{(i)}$$
; alors $B = \phi(N) + \sum_{i=0}^{n-1} \phi(T^{(i)})$ et $B - A = \phi(N) - N + \sum_{i=0}^{n-1} (\phi(T^{(i)}) - T^{(i)})$.

 $T^{(i)} \in \Delta_i$ donc d'après Q37, $\varphi(T^{(i)}) - T^{(i)} \in H_{k+1}$.

D'après Q38, $\varphi(N) - N - (NC - CN) \in H_{k+1}$ donc pour tout $i \leq k$, $B^{(i)} - A^{(i)} = (NC - CN)^{(i)}$.

Or NC – CN
$$\in \Delta_k$$
 (d'après Q33) donc $B^{(i)} - A^{(i)} = \begin{cases} 0 & \text{si } i \in \llbracket -1, k-1 \rrbracket \\ \text{NC – CN} & \text{si } i = k \end{cases}$

III. C - L'opérateur de Sylvester

- D'après Q32, Ker S est l'ensemble des matrices de Toeplitz réelles triangulaires inférieures.
- $N \in \Delta_{-1}$ donc d'après Q33, si $X \in \Delta_{k+1}$ alors NX et XN sont dans Δ_k , ainsi que $\mathcal{S}(X)$.

De même, $N^T \in \Delta_1$ donc $X \in \Delta_k \implies S^*(X) \in \Delta_{k+1}$.

 $\langle \mathcal{S}X \mid Y \rangle = \operatorname{tr}(X^T N^T Y - N^T X^T Y)$. Or $\operatorname{tr}(N^T X^T Y) = \operatorname{tr}(X^T Y N^T)$ donc $\langle \mathcal{S}X \mid Y \rangle = \langle X \mid N^T Y - Y N^T \rangle = \langle X \mid \mathcal{S}^* Y \rangle$. En particulier, pour $X \in \Delta_{k+1}$ et $Y \in \Delta_k$ on a bien $\langle S_{k+1} X | Y \rangle = \langle X | S_k^* Y \rangle$.

Mais alors, $Y \in \text{Ker}(S_k^*) \implies \langle S_{k+1}X \mid Y \rangle = 0$, ce qui montre que $\text{Im}(\tilde{S}_{k+1})$ et $\text{Ker}(S_k^*)$ sont orthogonaux, et donc en somme directe orthogonale.

 $\operatorname{Ker}(S_k^*) = \operatorname{Ker} S \cap \Delta_k = \operatorname{Vect}(D_k) \operatorname{donc} \operatorname{dim}(\operatorname{Ker}(S_k^*)) = 1 \operatorname{et} \operatorname{Ker}(S_k^*) \subset \Delta_k.$

D'après Q41, $\operatorname{Im}(\mathcal{S}_{k+1}) \subset \Delta_k$, et d'après le théorème du rang, $\dim(\operatorname{Im}(\mathcal{S}_{k+1})) = \dim(\Delta_{k+1}) - \dim(\operatorname{Ker}(\mathcal{S}_{k+1}))$. On a $\dim(\Delta_{k+1}) = \dim(\Delta_k)$ n-(k+1) et $\operatorname{Ker}(\mathcal{S}_{k+1}) = \operatorname{Ker} \mathcal{S} \cap \Delta_{k+1} = \{0\}$ donc $\dim(\operatorname{Im}(\mathcal{S}_{k+1})) = n-k-1$.

On a donc dim(Im(S_{k+1})) + dim(Ker(S_k^*)) = $n - k = \dim(\Delta_k)$ donc $\Delta_k = \operatorname{Im}(S_{k+1}) \stackrel{\perp}{\oplus} \operatorname{Ker}(S_k^*)$.

D'après Q39, si on prend $C \in \Delta_{k+1}$ et on pose $P = I_n + C$ alors A est semblable à $L = \varphi(A)$ et pour tout $i \in [-1, k-1]$, $L^{(i)} = A^{(i)}$. Il nous suffit donc de trouver $C \in \Delta_{k+1}$ vérifiant en plus la condition $L^{(k)} \in \text{Vect}(D_k)$.

La même question Q39 nous apprend que $L^{(k)} = A^{(k)} + S_{k+1}(C)$, et on constate alors qu'il suffit d'appliquer le résultat de la question précédente à $A^{(k)}$: on décompose $A^{(k)}$ suivant la somme directe obtenue : $A^{(k)} = S_{k+1}(X) + Y$ avec $X \in \Delta_{k+1}$ et $Y \in Ker(S_{k}^{*}) = Vect(D_{k})$ et de poser C = -X pour que $A^{(k)} + S_{k+1}(C) = Y \in Vect(D_{k})$, autrement dit pour que $L^{(k)} \in Vect(D_{k})$.

Soit $A = C(a_0, ..., a_{n-1})$ une matrice cyclique : on observe qu'elle s'écrit A = N + T, où T est triangulaire supérieure. D'après la question précédente avec k = 0, elle est semblable à une matrice L_0 avec $L_0 \in H_{-1}$, $L_0^{(-1)} = A^{(-1)} = D_{-1}$ et $L_0^{(0)} = t_0 D_0$ avec $t_0 \in \mathbb{R}$. On observe qu'on peut écrire $L_0 = N + T_0$ où T_0 est triangulaire supérieure, à diagonale constante. On ré-applique la question précédente à L_0 mais cette fois avec k = 1: L_0 est semblable à une matrice L_1 avec $L_1 \in H_{-1}$, $L_1^{(-1)} = L_0^{(-1)} = D_{-1}$, $L_1^{(0)} = L_0^{(0)} = t_0 D_0$ et $L_1^{(1)} = t_1 D_1$. En réitérant ce processus on obtient *in fine* une matrice de Toeplitz $L_{n-1} = T(0, \dots, 1, t_0, \dots, t_{n-1})$ semblable à la matrice A.

page 4 Lycée Marcelin Berthelot