SÉRIES FACTORIELLES (CENTRALE PC 2009 – EXTRAIT)

Durée: libre

Le problème porte sur l'étude des séries factorielles, séries de fonctions de la forme $\sum a_n \frac{n!}{x(x+1)(x+2)\cdots(x+n)}.$

Les parties I et II traitent d'un exemple, la partie III, indépendante des deux premières, a pour objet l'étude de propriétés de la somme d'une série factorielle convergente sur l'intervalle $]0,+\infty[$.

I Préliminaires

I.A – Pour tout entier naturel non nul *p*; on pose :

$$\forall n \in \mathbb{N}^*, \quad u(n,p) = \frac{1}{n(n+1)\cdots(n+p)}$$

- **I.A.1)** Montrer que la série $\sum_{n\geqslant 1} u(n,p)$ est convergente.
- **I.A.2)** On pose $\sigma(p) = \sum_{n=1}^{+\infty} u(n,p)$. Calculer $\sigma(1)$.
- **I.A.3**) Pour $p \ge 2$ et $n \in \mathbb{N}^*$, exprimer u(n, p-1) u(n+1, p-1) en fonction de p et u(n, p).
- **I. A. 4**) En déduire la valeur de $\sigma(p)$ en fonction de p, pour $p \ge 2$.
- *I. B* − Soient $q \ge 2$ et $N \ge 1$ deux entiers naturels. Donner une majoration du reste $R(N,q) = \sum_{n=N+1}^{+\infty} \frac{1}{n^q}$ en le comparant à une intégrale.

II Un exemple d'accélération de la convergence

II.A -

II. A. 1) Montrer par récurrence l'existence de trois suites (a_p) , (b_p) et (c_p) d'entiers naturels définies pour $p \ge 2$ telles que, pour tout x > 0 et pour tout entier p on ait :

$$\frac{1}{x^3} = \sum_{k=2}^p \frac{a_k}{x(x+1)\cdots(x+k)} + \frac{b_p x + c_p}{x^3(x+1)(x+2)\cdots(x+p)}.$$

- II. A. 2) Exprimer a_{p+1} , b_{p+1} et c_{p+1} à l'aide de p, b_p et c_p .
- **II. A. 3**) Montrer que pour tout $p \ge 2$, $b_p \ge c_p \ge 0$.
- **II. A. 4**) Calculer a_p , b_p et c_p pour p = 2, 3 et 4.
- II.B On désire calculer une valeur décimale approchée de $\zeta(3) = \sum_{n=1}^{+\infty} \frac{1}{n^3}$ avec une erreur inférieure ou égale à $\varepsilon = 5.10^{-5}$.
- II. B. 1) En utilisant la question I. B, déterminer un entier naturel N suffisant pour que $\sum_{n=N+1}^{+\infty} \frac{1}{n^3}$ soit inférieur à ϵ .
- II. B. 2) Donner un majorant simple de $\sum_{n=N+1}^{+\infty} \frac{b_4 n + c_4}{n^3 (n+1) \cdots (n+4)}$ et montrer, à l'aide de tout ce qui précède, comment calculer $\zeta(3)$ pour la même valeur de ε avec une valeur de N moins grande que celle trouvée à la question II. B. 1)
- II. B. 3) Donner une valeur décimale approchée à ϵ près (par défaut) de $\zeta(3)$ en utilisant ce qui précède.

Lycée Marcelin Berthelot page 1

Séries factorielles Ш

III. A -

III. A. 1) Pour tout entier naturel n et tout réel x > 0 on pose :

$$u_n(x) = \frac{n!}{x(x+1)\cdots(x+n)}, \qquad v_n(x) = \frac{1}{(n+1)^x}, \qquad w_n(x) = \frac{u_n(x)}{v_n(x)}.$$

Montrer que la série de terme général $\ln\left(\frac{w_n(x)}{w_{n-1}(x)}\right)$, définie pour $n \ge 1$, est convergente.

III. A. 2) En déduire qu'il existe $\ell(x)$ (dépendant de x et strictement positif) tel que $\lim_{n \to +\infty} \frac{u_n(x)}{v_n(x)} = \ell(x)$.

III.B – Soit (a_n) une suite de complexes et x un réel strictement positif. Montrer que la série $\sum_{n\geqslant 0}a_nu_n(x)$ est absolument convergente (en abrégé AC) si et seulement si la série $\sum a_nv_n(x)$ est AC.

III. C – On désigne désormais par $\mathcal A$ l'ensemble des suites (a_n) indexées par $\mathbb N$ telles que la série $\sum a_n u_n(x)$ soit AC pour tout réel x strictement positif.

Soit (a_n) un élément de \mathscr{A} . Montrer que :

III. C. 1) la fonction f_a définie par : $\forall x > 0$, $f_a(x) = \sum_{n=0}^{+\infty} a_n u_n(x)$ est continue sur $]0, +\infty[$; III. C. 2) la fonction f_a tend vers 0 en $+\infty$.

III. D –

III. D. 1) Donner un exemple d'un élément a de \mathscr{A} avec a_n non nul pour tout entier n.

III. D. 2) Donner un exemple d'une suite (a_n) qui ne soit pas élément de \mathcal{A} .

III. E – Soit a un élément de \mathscr{A} .

III. E. 1) Montrer que, pour tout entier n la fonction u_n est de classe \mathscr{C}^1 sur $]0,+\infty[$ et que :

$$\forall x > 0, \quad |u_n'(x)| \le u_n(x) \left(\frac{1}{x} + \ln\left(1 + \frac{n}{x}\right)\right).$$

III. E. 2) En déduire que la fonction f_a est de classe \mathscr{C}^1 sur l'intervalle $]0, +\infty[$.