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Corrigé : séries factorielles (centrale PC 2009 - extrait)

I Préliminaires

I. A –

I. A. 1) Puisque p ⩾ 1, on a u(n,p) =
n→+∞

O
( 1
n2

)
donc la série positive

∑
u(n,p) converge.

I. A. 2) u(n,1) =
1

n(n+ 1)
=

1
n
− 1
n+ 1

et par télescopage
N∑
n=1

u(n,p) = 1− 1
N + 1

. En faisant tendre N vers +∞ on obtient

σ(1) = 1.

I. A. 3) Pour p ⩾ 2 et n ⩾ 1 on calcule : u(n,p − 1)−u(n+ 1,p − 1) =
p

n(n+ 1) · · · (n+ p)
= pu(n,p).

I. A. 4) En sommant pour n ∈N∗ on obtient : σ(p − 1)−
(
σ(p − 1)−u(1,p − 1)

)
= pσ(p), soit σ(p) =

u(1,p − 1)
p

=
1

p × p!
.

I. B – Soit n ⩾ 2. Pour tout t ∈ [n− 1,n],
1
nq
⩽

1
tq

donc
1
nq
⩽

∫ N

n−1

dt
tq

. On en déduit : R(N,q) ⩽
∫ +∞

N

dt
tq

=
1

(q − 1)Nq−1 .

II Un exemple d’accélération de convergence

II. A –

II. A. 1) Prouvons l’existence de ap, bp et cp par récurrence forte sur p ⩾ 2 :

– si p = 2, on cherche a2, b2 et c2 vérifiant :
1
x3 =

a2

x(x+ 1)(x+ 2)
+

b2x+ c2

x3(x+ 1)(x+ 2)
, soit encore : (x + 1)(x + 2) =

a2x
2 + b − 2x+ c2. Il suffit donc de poser a2 = 1, b2 = 3 et c2 = 2 ;

– si p ⩾ 3, on suppose l’existence de ces entiers acquise jusqu’au rang p − 1. On peut donc écrire :

1
x3 =

p−1∑
k=2

ak
x(x+ 1) · · · (x+ k)

+
bp−1x+ cp−1

x3(x+ 1)(x+ 2) · · · (x+ p − 1)

et on est amené à chercher ap, bp et cp vérifiant :

bp−1x+ cp−1

x3(x+ 1)(x+ 2) · · · (x+ p − 1)
=

ap
x(x+ 1) · · · (x+ p)

+
bpx+ cp

x3(x+ 1)(x+ 2) · · · (x+ p)
,

soit encore : (bp−1x+ cp−1)(x+ p) = apx
2 + bpx+ cp. Il suffit donc de poser ap = bp−1, bp = pbp−1 + cp−1 et cp = pcp−1.

II. A. 2) En réindexant, nous avons obtenu les relations : ap+1 = bp, bp+1 = (p+ 1)bp + cp, cp+1 = (p+ 1)cp.

II. A. 3) Clairement, cp = p! ⩾ 0. Nous avons donc : ∀p ⩾ 3, bp ⩾ pbp−1, inégalité qui permet de prouver sans peine par
récurrence que bp ⩾ p!.

II. A. 4) On a c2 = 2, c3 = 6 et c4 = 24, ce qui permet de calculer b2 = 3, b3 = 11, b4 = 50 puis a2 = 1, a3 = 3, a4 = 11.

II. B –

II. B. 1) Pour que le reste au rang N soit inférieur à 5.10−5 il suffit que
1

2N2 ⩽ 5.10−5, soit N ⩾ 100.

II. B. 2) Utilisons la question II. A pour écrire :

1
n3 =

a2

n(n+ 1)(n+ 2)
+

a3

n(n+ 1)(n+ 2)(n+ 3)
+

a4

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
+

b4n+ c4

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)

et sommons. On obtient : ζ(3) = a2σ(2) + a3σ(3) + a4σ(4) +
+∞∑
n=1

b4n+ c4

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.
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Lorsqu’on approche ζ(3) par a2σ(2) + a3σ(3) + a4σ(4) +
N∑
n=1

b4n+ c4

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)
, l’erreur commise vaut :

+∞∑
n=N+1

b4n+ c4

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)
⩽ b4

+∞∑
n=N+1

1
n6 + c4

+∞∑
n=N+1

1
n7 ⩽

b4

5N5 +
c4

6N6

Quelques essais à la machine permettent de constater que pour n ⩾ 12 on a
b4

5N5 +
c4

6N6 ⩽ 5.10−5 ; on peut donc approcher

ζ(3) à la précision ϵ par :
1
2

+
1
6

+
11
96

+
12∑
n=1

50n+ 24
n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)

.

II. B. 3) L’application numérique donne ζ(3) ≈ 1,202038515. Le reste étant à l’évidence positif, ceci constitue bien une
approximation par défaut.

III Séries factorielles

III. A –

III. A. 1) On calcule
un(x)
un−1(x)

=
n

x+n
et

vn−1(x)
vn(x)

=
(
1 +

1
n

)x
donc :

ln
( wn(x)
wn−1(x)

)
= ln

( un(x)
un−1(x)

)
+ ln

(vn−1(x)
vn(x)

)
= − ln

(
1 +

x
n

)
+ x ln

(
1 +

1
n

)
=

n→+∞
O
( 1
n2

)
,

ce qui prouve la convergence absolue de
∑

ln
( wn(x)
wn−1(x)

)
.

III. A. 2) Par télescopage,
N∑
n=1

ln
( wn(x)
wn−1(x)

)
= lnwn(x)−lnw0(x) donc la suite

(
lnwn(x)

)
n∈N

converge vers une limite α(x) ∈R,

ce qui prouve que la suite
(
wn(x)

)
n∈N

converge vers ℓ(x) = eα(x) > 0.

III. B – Sachant que ℓ(x) ne s’annule pas, on a à la fois anun(x) = O
(
anvn(x)

)
et anvn(x) = O

(
anun(x)

)
, ce qui prouve que∑

|anun(x)| converge si et seulement si
∑
|anvn(x)| converge.

III. C –

III. C. 1) Soit α > 0. La fonction un étant décroissante, nous avons sur l’intervalle [α,+∞[ : ∥anun∥∞ = |anun(α)|. Puisque
a ∈A , la convergence est normale (donc uniforme) sur cet intervalle.
Chacune des fonctions un étant continue, la fonction fa est elle aussi continue sur chacun des intervalles [α,+∞[, puis par
recouvrement sur ]0,+∞[.

III. C. 2) La convergence uniforme nous permet aussi d’appliquer le théorème d’interversion des passages à la limite (hors

programme) pour calculer : lim
x→+∞

fa(x) =
+∞∑
n=0

lim
x→+∞

anun(x) = 0.

III.D –

III.D. 1) Posons pour tout n ∈N, an =
1

n+ 1
. Alors anvn(x) =

1
(n+ 1)1+x et d’après la règle de Riemann la série positive∑

anvn(x) converge pour tout x > 0. D’après la question III.2, la série
∑

anun(x) est absolument convergente pour tout
x > 0, et a ∈A .

III.D. 2) Posons pour tout n ∈N, an = 1. Alors anvn(x) =
1

(n+ 1)x
et d’après la règle de Riemann la série positive

∑
anvn(x)

diverge pour x ∈ ]0,1[. D’après la question III.2, la série
∑

anun(x) n’est donc pas convergente pour tout x > 0, et a <A .

III. E –
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III. E. 1) La fonction un est à l’évidence strictement positive et de classe C 1 sur ]0,+∞[ ; il en est donc de même de la

fonction x 7→ lnun(x) = ln(n!)−
n∑

k=0

ln(x+ k), qui donne en dérivant :
u′n(x)
un(x)

= −
n∑

k=0

1
x+ k

.

Il s’agit donc de prouver la majoration :
n∑

k=1

1
x+ k

⩽ ln
(
1 +

n
x

)
, inégalité qu’on peut obtenir en sommant les inégalités :

1
x+ k

⩽

∫ k

k−1

dt
x+ t

(qu’on obtient par comparaison à une intégrale).

III. E. 2) Soit α > 0. Sur l’intervalle [α,+∞[ nous avons : ∥u′n∥∞ ⩽ ∥un∥∞
(1
α

+ ln
(
1 +

n
α

))
∼ lnn∥un∥∞ = (lnn)un(α) = o

(
un(β)

)
avec 0 < β < α. Puisque a ∈ A , la série

∑
anun(β) converge, ce qui prouve la convergence normale (donc uniforme) de∑

anu
′
n sur l’intervalle [α,+∞[.

Le théorème de dérivation terme à terme permet d’affirmer que la fonction fa est de classe C 1 sur [α,+∞[, puis par
recouvrement sur ]0,+∞[.
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