Calcul différentiel

Continuité

Exercice 1 (*)

Étudier les limites en (0,0) des fonctions suivantes :

$$f(x,y) = \frac{x^2 + xy + y^2}{x^2 + y^2} \qquad f(x,y) = \frac{xy(x+y)}{x^2 + y^2} \qquad f(x,y) = \frac{x+2y}{x^2 - y^2} \qquad f(x,y) = \frac{1 - \cos(xy)}{xy^2}.$$

Exercice 2 (*)
Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 définie par $f(x,y) = \begin{cases} \frac{x^2}{2} + y^2 - 1 & \text{si } x^2 + y^2 > 1 \\ -\frac{x^2}{2} & \text{si } x^2 + y^2 \leqslant 1 \end{cases}$

Montrer que f est continue sur \mathbb{R}^2

Calcul différentiel

Exercice 3 (**)

Soit E un espace vectoriel euclidien, et $f: x \mapsto ||x||$. En quels points cette application est-elle différentiable? Préciser le vecteur gradient en ces points.

Exercice 4 (*)

Soit $E = \mathbb{R}_n[X]$ et $f : E \to \mathbb{R}$ définie par $f(P) = \int_0^1 P(t)^2 dt$. Montrer que f est de classe \mathscr{C}^1 et déterminer sa différentielle.

Exercice 5 (*)

Exercice 5 (*)
Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 définie par : $f(x,y) = \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

Montrer que f admet en (0,0) des dérivées partielles, mais que f n'est pourtant pas continue en ce point.

Exercice 6 (*)

Montrer que l'application $f : \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = \frac{x^2y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$

est de classe \mathscr{C}^1 sur \mathbb{R}^2 .

Exercice 7 (******)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 . On définit $g: \mathbb{R}^2 \to \mathbb{R}$ par :

$$g(x,y) = \begin{cases} \frac{f(y) - f(x)}{y - x} & \text{si } x \neq y\\ f'(x) & \text{sinon} \end{cases}$$

Montrer que g est de classe \mathscr{C}^1 .

Exercice 8 (*)

Soit $\phi : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , et $f : \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}$ définie par $f(x,y) = \phi \left(\frac{y}{x}\right)$.

Montrer que f vérifie la relation : $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 0$.

Exercice 9 (**)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathscr{C}^1 .

- a. On suppose que pour tout $t \in \mathbb{R}$, f(x+t,y+t) = f(x,y). Montrer que $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 0$.
- *b.* On suppose que pour tout t > 0, f(tx, ty) = f(x, y). Montrer que $x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = 0$.

Exercice 10 (**)

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une application non identiquement nulle de classe \mathscr{C}^1 . On dit que f est homogène s'il existe une application $\phi:]0, +\infty[\longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 telle que :

(*)
$$\forall (x,y) \in \mathbb{R}^2, \ \forall \lambda > 0, \quad f(\lambda x, \lambda y) = \phi(\lambda) f(x,y).$$

- a. Montrer que si f est homogène, il existe $\alpha \in \mathbb{R}$ tel que $\forall \lambda > 0$, $\varphi(\lambda) = \lambda^{\alpha}$. Indication. Dériver l'égalité (*) par rapport aux variables x, y et λ .
- b. Montrer alors que f est homogène si et seulement s'il existe $\alpha \in \mathbb{R}$ tel que :

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y).$$

c. Résoudre cette équation aux dérivées partielles à l'aide des coordonnées polaires.

Équations aux dérivées partielles

Exercice 11 (*)

Résoudre sur \mathbb{R}^2 l'équation aux dérivées partielles $\frac{\partial f}{\partial x}(x,y) - 3\frac{\partial f}{\partial y}(x,y) = 0$ en posant $\begin{cases} u = 2x + y \\ v = 3x + y \end{cases}$.

Exercice 12 (*)

En utilisant les coordonnées polaires résoudre l'équation aux dérivées partielles suivante :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) + x^2 + y^2 = f(x,y).$$

Exercice 13 (*)

Résoudre sur $\mathcal{U} = \{(x,y) \in \mathbb{R}^2 \mid x > 0\}$ l'équation $y \frac{\partial f}{\partial x}(x,y) - x \frac{\partial f}{\partial y}(x,y) = 2f(x,y)$ à l'aide des coordonnées polaires.

Exercice 14 (**)

Résoudre sur $\mathcal{U} = \{(x,y) \in \mathbb{R}^2 \mid x > y\}$ l'équation $x \frac{\partial f}{\partial x}(x,y) - y \frac{\partial f}{\partial y}(x,y) = (x-y)f(x,y)$ en posant $\begin{cases} u = x + y \\ v = xy \end{cases}$.

Exercice 15 (*)

Résoudre sur \mathbb{R}^2 l'équation $\frac{\partial^2 f}{\partial x^2}(x,y) - \frac{\partial^2 f}{\partial y^2}(x,y) = 0$ en posant $\begin{cases} u = x + y \\ v = x - y \end{cases}$.

Exercice 16 (*)

Étant donné $(a, b, c) \in \mathbb{R}^3$ on considère l'équation aux dérivées partielles

$$a\frac{\partial^2 f}{\partial x^2} + b\frac{\partial^2 f}{\partial x \partial y} + c\frac{\partial^2 f}{\partial y^2} = 0$$

où la fonction f est supposée de classe \mathscr{C}^2 sur \mathbb{R}^2 .

- a. Transformer l'équation par le changement de variables $u = x + \alpha y$ et $v = x + \beta y$.
- b. Lorsque $b^2 4ac > 0$ montrer qu'on peut intégrer l'équation.

Exercice 17 (**)

Résoudre sur un ouvert adéquat l'équation $x^2 \frac{\partial^2 f}{\partial x^2}(x,y) - y^2 \frac{\partial^2 f}{\partial y^2}(x,y) = 0$ en posant $\begin{cases} u = xy \\ v = x/y \end{cases}$.

Exercice 18 (**)

On appelle *laplacien* de f la quantité $\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y)$. Calculer-le en coordonnées polaires. Quels sont les fonctions *harmoniques* (c'est-à-dire vérifiant $\Delta f = 0$) et *isotropes* (ne dépendant pas de l'angle θ)?

Extremums d'une fonction

Exercice 19 (*)

Déterminer les extremums locaux sur \mathbb{R}^2 des fonctions suivantes :

$$(x,y) \mapsto x^3 + y^3 - 3xy$$
 $(x,y) \mapsto (x-y)e^{xy}$

Exercice 20 (**)

Étudier les extremums locaux éventuels de la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x,y,z) = xy + yz + zx - xyz.

Exercice 21 (*)

Déterminer la valeur maximale sur $\left[0, \frac{\pi}{2}\right]^2$ de $f: (x, y) \mapsto \sin x \sin y \sin(x + y)$.

Exercice 22 (*)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = x^2 + x^2y + y^3$.

- a. Montrer que f admet un point critique qui n'est pas un extremum local.
- b. Soit $K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Déterminer les extremums de f sur K.

Exercice 23 (**)

Soient x, y et z trois nombres réels positifs. On admet qu'il est possible de construire un triangle dont les côtés sont de longueurs respectives x, y et z si et seulement si :

$$x < y + z$$
, $y < z + x$, et $z < x + y$.

Un triangle variable a un périmètre p imposé, ses côtés ont pour longueur x, y et z.

On pose $F(x,y,z) = (x+y)^2 + (y+z)^2 + (z+x)^2$. Déterminer le triangle pour lequel F(x,y,z) est minimal, et donner la valeur de ce minimum.

Exercice 24 (***)

Déterminer le périmètre maximal d'un triangle inscrit dans un cercle de rayon 1.